
612

Uniciencia Vol. 36(1), pp. 1-9, January-December, 2022
 www.revistas.una.ac.cr/uniciencia
 revistauniciencia@una.cr

http://dx.doi.org/10.15359/ru.36-1.39
E-ISSN: 2215-3470

CC: BY-NC-ND

Measuring Traffic Dynamics at the Edge
Midiendo la dinámica de tráfico vehicular en el Edge
Medindo a dinâmica do tráfego de veículos na Edge

Luis Gerardo León-Vega1*, Jorge Castro-Godínez1

Received: Oct/4/2021 •Accepted: Jan/14/2022 • Published: Nov/1/2022

Abstract

This work aims to measure the impact of approximate computing on a case study of traffic dynamics metering
on a System-on-Chip edge computing device. Firstly, the study proposes a baseline implementation of the
metering system in C++. To analyze the application in detail, study profiled the baseline using a built-in
instrumented profiler, presenting the overall performance of each of its parts. During the hotspot analysis,
some parts had optimization opportunities exploitable by multi-threading and approximate computing
techniques, particularly frame skipping, which is inspired by the loop perforation approximate technique.
The first optimization employed was multi-threading, which led to a 1.32x speedup on the application
without introducing errors in the metrics. Then, the meter was optimized by using frame skipping. This
work demonstrated that adaptatively modifying the number of frames skipped improved the error in the
final metrics compared to keeping it fixed. In terms of performance, the frame skipping brought the overall
speed up to 1.76x. Approximate computing, in particular, frame skipping, managed to contribute up to
25% of the overall speedup, managing to accelerate the meter from 8.7 frames per second to 15 fps in the
most critical case in exchange for some numerical error on the final metrics.
Keywords: traffic dynamics meter; edge computing; approximate computing

Resumen

El objetivo de este trabajo es medir el impacto de la aplicación de técnicas de computación aproximada
sobre un caso de estudio de implementación de un medidor de la dinámica de tráfico vehicular en una
unidad computacional basada en un sistema embebido. El estudio parte de una implementación inicial
del medidor hecha en C++. Para el análisis de la aplicación, la implementación inicial se perfila con un
perfilador empotrado en el mismo código, que muestra información detallada de cada una de las partes.
Durante el análisis de consumo, se encontraron partes optimizables con paralelismo a nivel de hilos y
técnicas de computación aproximada como omisión de recuadros, que es una técnica inspirada en la
perforación de lazos. La primer optimización realizada fue la implementación multihilo, que logró acelerar
la aplicación 1.32 veces sin introducir errores en los resultados. Posteriormente, la implementación fue
optimizada con la omisión de recuadros. Durante el desarrollo de este trabajo, se demuestra que modificar
el número de recuadros omitidos de forma dinámica en tiempo de ejecución mejora considerablemente

*Corresponding author
Luis Gerardo León-Vega, lleon95@estudiantec.cr, https://orcid.org/0000-0002-3263-7853
Jorge Castro-Godínez, jocastro@tec.ac.cr, https://orcid.org/0000-0003-4808-4904
1	 Electronics Engineering School, Instituto Tecnológico de Costa Rica, Cartago, Costa Rica.

https://www.revistas.una.ac.cr/index.php/uniciencia
mailto:revistauniciencia%40una.cr?subject=Uniciencia
http://dx.doi.org/10.15359/ru.36-1.39
https://creativecommons.org/licenses/by-nc-nd/3.0/deed.en
https://publica2.una.ac.cr/revistas/uniciencia/36(1)/MP3/Art-39-Ing.mp3
https://publica2.una.ac.cr/revistas/uniciencia/36(1)/MP3/Art-39-Esp.mp3
mailto:lleon95%40estudiantec.cr?subject=
https://orcid.org/0000-0002-3263-7853
mailto:jocastro%40tec.ac.cr?subject=
https://orcid.org/0000-0003-4808-4904
https://www.euna.una.ac.cr/index.php/EUNA
https://www.una.ac.cr/

Luis Gerardo León-Vega • Jorge Castro-Godínez

http://dx.doi.org/10.15359/ru.36-1.39
E-ISSN: 2215-3470

CC: BY-NC-ND

U
N

IC
IEN

C
IA

 Vol. 36, N
°. 1, pp. 1-9. January-D

ecem
ber, 2022 •

 w
w

w.revistas.una.ac.cr/uniciencia •
 revistauniciencia@

una.cr

613

el error introducido comparado a mantener constante el número de recuadros omitidos. La combinación
de ambas optimizaciones concluyó en una implementación 1.76 veces más rápida, donde la aplicación de
computación aproximada mediante omisión de recuadros contribuyó hasta en un 25% sobre el total de la
mejora, acelerando el medidor de 8.7 recuadros por segundo a 15 en el escenario más crítico a cambio de
la introducción de errores numéricos.
Palabras clave: Medición de dinámica vehicular, computación en el Edge, computación aproximada.

Resumo

O objetivo deste trabalho é medir o impacto da aplicação de técnicas de computação aproximada em um
estudo de caso da implementação de um medidor de dinâmica de tráfego de veículos em uma unidade
computacional baseada em um sistema embarcado. O estudo começa a partir de uma implementação
inicial do medidor feita em C++. Para a análise da aplicação, a implementação inicial é perfilada com um
perfilador incorporado no próprio código, que exibe informações detalhadas sobre cada uma das partes.
Durante a análise de consumo, foram encontradas peças otimizáveis com paralelismo em nível de thread e
técnicas de computação aproximada, como o salto de quadros, que é uma técnica inspirada na perfuração de
laço. A primeira otimização realizada foi a implementação multithread, que conseguiu acelerar a aplicação
em 1,32 vezes sem introduzir erros nos resultados. Posteriormente, a implementação foi otimizada com
o salto de quadros. Durante o desenvolvimento deste trabalho, mostra-se que modificar a dinâmica do
número de salto de quadros em tempo de execução melhora consideravelmente o erro introduzido em
comparação com a manutenção constante do número de salto de quadros. A combinação de ambas as
otimizações resultou em uma implementação 1,76 vezes mais rápida, onde a aplicação da computação
aproximada por meio do salto de quadros contribuiu com até 25% da melhoria total, acelerando o medidor
de 8,7 quadros por segundo para 15 no cenário mais crítico, em troca da introdução de erros numéricos.
Palavras-chave: Medição da dinâmica de veículos, computação de borda, computação aproximada.

Introduction

As many other countries, Costa Rica
faces a severe traffic congestion problem,
particularly in the great metropolitan area
(GAM). The growing number of vehicles
causes dense traffic jams on main roads, and
it has increased by 40 % of the mobilization
time along the GAM in the last five years.

Finding an integral solution to this
problem requires automatic mechanisms to
estimate traffic dynamics. A Traffic Dynam-
ics Meter (TDM) is an application used to de-
termine traffic parameters, such as average
speed, traffic density, and occupancy (Hall,
1992). A TDM is commonly implemented

using cloud computing: remote cameras
capture video streams sent over the net to
distant servers to be processed (Zhu, Yu,
Wang, Ning, & Tang, 2019). The informa-
tion a TDM provides can help define traffic
optimization approaches, for instance, by
adapting traffic lights intervals and enabling
reversible and exclusive lanes for public
transport. Figure 1 depicts a TDM fed with
a live video of a road.

http://dx.doi.org/10.15359/ru.36-1.39
https://creativecommons.org/licenses/by-nc-nd/3.0/deed.en
https://www.revistas.una.ac.cr/index.php/uniciencia
mailto:revistauniciencia%40una.cr?subject=
https://publica2.una.ac.cr/revistas/uniciencia/36(1)/MP3/Art-39-Port.mp3

Luis Gerardo León-Vega • Jorge Castro-Godínez

http://dx.doi.org/10.15359/ru.36-1.39
E-ISSN: 2215-3470

CC: BY-NC-ND

U
N

IC
IEN

C
IA

 Vol. 36, N
°. 1, pp. 1-9. January-D

ecem
ber, 2022 •

 w
w

w.revistas.una.ac.cr/uniciencia •
 revistauniciencia@

una.cr

614

Figure 1. Example of a Traffic Dynamics Meter (TDM).
This TDM detects vehicles (blue zone), estimates traffic
flow (green zone), and determines traffic density (red zone),
as traffic speed is computed alongside these zones. This road
feed corresponds to Soquel Ave in Santa Cruz, California.
(California Department of Transportation (Caltrans)).
Note: Caltrans Streaming Video Locations. Caltrans. Retrieved (2018).

Background
Diverse approaches have

been proposed to implement
TDMs based on different data ac-
quisition techniques, algorithms,
and system architectures. One ap-
proach is based on big data (Zhu,
Yu, Wang, Ning, & Tang, 2019).
The main idea is to capture and ex-
ploit data from different sources,
such as video cameras, on-board
car sensors, on-road sensors, and
even social networks (D'Andrea,
Ducange, Lazzerini, & Marcel-
loni, 2015). All acquired data is
uploaded to the cloud, where a
group of servers and algorithms
perform computations to obtain
traffic dynamics estimations.

Other approaches simplify the complex-
ity of the TDMs by just using on-road sensors,
such as cameras, light and ranging detection
(LIDAR), ultrasonic, and acoustic sensors.
For instance, TDMs based on computer vision
have been reported in the literature about this
topic (Giridharan, Kadaieaswaran, Arunpra-
sath, & Karthika, 2017). Taking advantage of
the current cameras used for reporting traffic
conditions, especially in newscasts, measuring
the traffic density at intersections is possible.

For the case of video-based TDMs,
four relevant traffic metrics have been mod-
eled and reported in the literature (Hall,
1992): average speed (), traffic flow (q),
density (𝜆), and occupancy (o).

Average speed

It is the average speed of the vehicles
during a time-lapse:

As technology moves forward, it is no
longer foreseen to entirely depend on remote
servers for data-intensive processing (Yu, et
al., 2017). Edge computing has emerged to
offload the computational stress away from
the centralized cloud by distributing and
transferring computation to individual smart
nodes (Yu, et al., 2017), bringing the process-
ing where the information is obtained. For
instance, IoT nodes are expected to perform
partial, or even complete, machine learning
applications despite their computing pow-
er and energy constraints (Samie, Bauer, &
Henkel, 2019). In the context of a TDM, edge
nodes could perform all sensing and process-
ing required and transmit only relevant infor-
mation to a centralized server in the cloud.

Contribution: This work describes
a case study of a video-based TDM imple-
mented on an SoC-based edge computing
platform. Improving its performance su-
pposed exploiting approximate computing,
a novel design paradigm for error-tolerant
applications, and thread execution.

http://dx.doi.org/10.15359/ru.36-1.39
https://creativecommons.org/licenses/by-nc-nd/3.0/deed.en
https://www.revistas.una.ac.cr/index.php/uniciencia
mailto:revistauniciencia%40una.cr?subject=

Luis Gerardo León-Vega • Jorge Castro-Godínez

http://dx.doi.org/10.15359/ru.36-1.39
E-ISSN: 2215-3470

CC: BY-NC-ND

U
N

IC
IEN

C
IA

 Vol. 36, N
°. 1, pp. 1-9. January-D

ecem
ber, 2022 •

 w
w

w.revistas.una.ac.cr/uniciencia •
 revistauniciencia@

una.cr

615

where

Here N is the number of sampled vehi-
cles, and xj is the physical position at the tj time.

Flow rate

It represents how many vehicles are
crossing an imaginary line (or limit) per
sample period T, defined as:

Traffic density
It is the number of cars per unit of

length:

where L is the physical distance mea-
sured or estimated from the images.

Occupancy

It is the average time in which a vehi-
cle is analyzed:

where t1,i and t2,i are the times when the i – th
vehicle enters and exits from the
analysis zone, respectively.

A Traffic Dynamics
Meter

This work proposes a
TDM using data from videos,
particularly from free-to-access

camera feeds from roadsides, to estimate
the previously defined traffic metrics. Figu-
re 2 depicts the main stages of this TDM.
The Retriever stage takes each video frame,
converts it to grayscale, and applies filtering
and morphological operators. According to
the road and camera feed, this stage uses
predefined masks to define regions of inte-
rest in the scene, particularly for detection
and tracking. The Detector stage identifies
vehicles in the detection zone using Haar-li-
ke features (Viola & Jones, 2001) and pro-
duces an array of detected vehicles. For
such an array, the Tracker stage provides a
new tracker for each vehicle in the scene. As
depicted in Figure 2, the number of trackers
changes dynamically as the total number of
vehicles being tracked changes. Also, trac-
kers for the previously detected vehicles are
refreshed with each new video frame. This
tracking is performed using MOSSE filters
(Bolme, Beveridge, Draper, & Lui, 2010).
Finally, the Meter stage collects new vehi-
cle positions and extracts metrics for each
one, and it calculates the global flow, densi-
ty, occupancy, and average speed.

Figure 2. Block diagram of the main components in our
proposed TDM.
Note: Own source.

Baseline Performance

The TDM proposed was implemented
using C++ and OpenCV (version 3.3.0); it
was deployed on a Zynq XC7Z020, an off-
the-shelf SoC available in the ZedBoard

http://dx.doi.org/10.15359/ru.36-1.39
https://creativecommons.org/licenses/by-nc-nd/3.0/deed.en
https://www.revistas.una.ac.cr/index.php/uniciencia
mailto:revistauniciencia%40una.cr?subject=

Luis Gerardo León-Vega • Jorge Castro-Godínez

http://dx.doi.org/10.15359/ru.36-1.39
E-ISSN: 2215-3470

CC: BY-NC-ND

U
N

IC
IEN

C
IA

 Vol. 36, N
°. 1, pp. 1-9. January-D

ecem
ber, 2022 •

 w
w

w.revistas.una.ac.cr/uniciencia •
 revistauniciencia@

una.cr

616

development platform. We evaluated the
performance of this TDM with video sam-
ples from three different test scenarios:
two camera feeds from roads of San José,
Costa Rica, here referred to as General and
Multiplaza (Ministerio de Obras Públicas y
Transportes, n.d.); and a third camera feed
from Soquel Ave, in Santa Cruz, Califor-
nia, here referred as SoquelAve (California
Department of Transportation (Caltrans)).
Samples of these camera feeds are present-
ed in Figures 3.a, 3.b, and 3.c, respectively.
Each scenario presents different traffic dy-
namics, which leads to different detection
and tracking effort. General represents a
low traffic density with high-speed vehicle
flow. On the other hand, SoquelAve presents
a high density with moderate speed. Multi-
plaza is an intermediate scenario.

evaluation, the queue of detected vehi-
cles was processed in serial. Considering
a requirement of 30 fps, the current exe-
cution time required per frame is above
this constraint for the three scenarios. In
the experimentation, the time required by
the Retriever stage is almost constant for
these scenarios. However, the Detector and
Tracking stages consume most of the execu-
tion time, ranging from 27 % to 79 %, and
from 13 % to 225 % of the entire processing
time per frame, respectively. As depicted,
the required time for actually estimating the
traffic dynamic metrics is negligible.

Considering these scenarios, the de-
tection effort in General is caused by false
positives during the first stages of the de-
tection. However, its tracking requirement
is smaller with respect to the other two
scenarios due to a lower traffic density. In
SoquelAve, more vehicles are detected and
tracked along the region of interest, which

Figure 3. Test scenarios are used in the scope of this work and the execution profile of
TDM for them. The execution time for each stage of the TDM presented is relative to a
frame period (1/fps). A frame rate of 30 fps is defined as a performance constraint.
Note: Cámaras Viales CR. Cámaras Viales CR. Retrieved (2018).

An execution profile of the TDM is
presented in Figure 1.d for these three test
scenarios. For this baseline performance

http://dx.doi.org/10.15359/ru.36-1.39
https://creativecommons.org/licenses/by-nc-nd/3.0/deed.en
https://www.revistas.una.ac.cr/index.php/uniciencia
mailto:revistauniciencia%40una.cr?subject=

Luis Gerardo León-Vega • Jorge Castro-Godínez

http://dx.doi.org/10.15359/ru.36-1.39
E-ISSN: 2215-3470

CC: BY-NC-ND

U
N

IC
IEN

C
IA

 Vol. 36, N
°. 1, pp. 1-9. January-D

ecem
ber, 2022 •

 w
w

w.revistas.una.ac.cr/uniciencia •
 revistauniciencia@

una.cr

617

is reflected in a high execution time required
for each frame. Multiplaza has the least de-
tection, but more tracking effort compared
to General. In this case, the detection dis-
cards more elements early but tracks more
vehicles due to a higher density.

The implementation of the proposed
TDM deals with several implementation
challenges, for instance, rotation, geometric
transformations, scaling of the vehicles, and
light variances in the scene. This was con-
sidered when selecting object detection and
tracking algorithms. Haar-like features were
more suitable for object detection than Local
Binary Patterns (LBP). Although LBP were
faster than Haar-like features (2.3x), its de-
tection accuracy was lower (about 5 %).

Object tracking techniques are emplo-
yed to complement the detection and make
it more robust to catch false negative cases.
Thus, once the application detects a vehicle,
the Tracker is in charge of analyzing it in
the following frames. One requirement for
object tracking is transformation invariance.
Adaptive-kernel trackers are used for their
capability to adapt to the object transforma-
tion over time if the object does not change
suddenly. The MOSSE filter adapts its kernel
according to a valid detection, which helps
the Tracker catch most of the transformations
of the object during the video sequence. If
multiple objects are detected, the same num-
ber of trackers are required, leading to linear
growth in the computational requirement.

Optimizations

To improve the performance of our
TDM, we explored two techniques at the soft-
ware level: frame skipping and multi-thread-
ed execution for object tracking.

Frame skipping: In dense traffic, ve-
hicles do not move as fast as they do on a free
road, affecting the traffic density. Inspired

by loop perforation (Sidiroglou-Douskos,
Misailovic, Hoffmann, & Rinard, 2011),
an approximate computing technique, and
considering the traffic density metric, we
propose to save execution time by skipping
frames to be processed. We explored two
approaches for frame skipping. The first
considers a fixed number of frames to be
skipped in-a-row. The second adjusts this
number dynamically, considering the traffic
density metric as a reference. The number
of frames f to be skipped with this dynamic
approach can be defined as:

where 𝜆 is the last known density, and 𝜆i are
the minimum and maximum traffic density
values reported for a video stream. The Fmax
is the maximum number of frames that can be
skipped without exceeding a given maximum
error with a fixed approach. We use relative
error RE as error metric, calculated as follows:

where M corresponds to one of the tra-
ffic metrics. For each scenario, the accu-
rate value for each metric was manually
determined.

Both frame skipping approaches im-
pact the accuracy of the estimations per-
formed by our TDM, as depicted in Figure
4 for the case of SoquelAve. For the fixed
approach, 3 and 2 frames were skipped for
the Detector and Tracker stage, respectively.
For the dynamic one, Fmax was selected, such
as RE < 20 % for all the metrics. As shown,
even the baseline implementation is not en-
tirely accurate, and it presents errors with
respect to a golden estimation. The fixed

http://dx.doi.org/10.15359/ru.36-1.39
https://creativecommons.org/licenses/by-nc-nd/3.0/deed.en
https://www.revistas.una.ac.cr/index.php/uniciencia
mailto:revistauniciencia%40una.cr?subject=

Luis Gerardo León-Vega • Jorge Castro-Godínez

http://dx.doi.org/10.15359/ru.36-1.39
E-ISSN: 2215-3470

CC: BY-NC-ND

U
N

IC
IEN

C
IA

 Vol. 36, N
°. 1, pp. 1-9. January-D

ecem
ber, 2022 •

 w
w

w.revistas.una.ac.cr/uniciencia •
 revistauniciencia@

una.cr

618

approach improves
the average speed
and occupancy esti-
mations regarding the
baseline; however, it
significantly increas-
es the error for flow
and density. The dy-
namic approach im-
proves the metrics es-
timations concerning
the baseline, except for average speed.

using FFT, Peak-to-Sidelobe Ratio (PSR)
computation, and filter update. This last
step is only executed if PSR > th, where th
= 5.7 in the MOSSE filter implementation
of OpenCV.

The computing effort spent by the
filter update is comparable to the other
previous steps performed during the
tracking. Hence, the multi-thread opti-
mization consists in using an additional
thread, from the standard C++ library
to compute the filter updates passed by
a queue as soon as the thresholding has
been applied and keeping the other steps
of the Tracking stage on the main thread.
Thus, the correlation and the filter update
work in a pipeline manner, enhancing the
time-to-solution for each tracker.

Evaluation

Figure 5 highlights the performance
improvement obtained by executing our
TDM with multi-thread object tracking

(MT) and frame skip-
ping (FS). For the
case of FS, we have
used the dynamic ap-
proach as, in general,
it provides metric es-
timations with small-
er errors.

Figure 4. Effect of frame skipping in the accuracy of traffic
dynamic metrics. These results correspond to the SoquelAve
scenario, which is the worst-case scenario.
Note: Own source.

It is interesting to notice that approxi-
mate implementations of our TDM can pro-
duce better traffic metrics estimations. To
understand this, it is required to analyze the
effects of a tracking failure within the detec-
tion zone. Under certain conditions, such as
vehicle rotation or light variance, the trackers
cannot find the car and refresh themselves.
This results in trackers stuck within the de-
tection zone, affecting the detection of new
vehicles. This issue happens less frequently
when applying a frame skipping technique
since some cars are detected later than the
baseline, enhancing the tracking. It is worth
mentioning that density and flow metrics
depend on the total vehicles tracked and the
speed and occupancy of the tracking itself.

Multi-Thread Object Tracking: As
previously discussed, a new tracker is re-
quired each time the Detector stage finds a
vehicle. Each tracker performs several op-
erations: frame preprocessing, correlation

Figure 5. Runtime optimization for our TDM implementation with
multi-thread object tracking (MT) and frame skipping (FS).
Note: Own source.

http://dx.doi.org/10.15359/ru.36-1.39
https://creativecommons.org/licenses/by-nc-nd/3.0/deed.en
https://www.revistas.una.ac.cr/index.php/uniciencia
mailto:revistauniciencia%40una.cr?subject=

Luis Gerardo León-Vega • Jorge Castro-Godínez

http://dx.doi.org/10.15359/ru.36-1.39
E-ISSN: 2215-3470

CC: BY-NC-ND

U
N

IC
IEN

C
IA

 Vol. 36, N
°. 1, pp. 1-9. January-D

ecem
ber, 2022 •

 w
w

w.revistas.una.ac.cr/uniciencia •
 revistauniciencia@

una.cr

619

As it can be noticed, for the Multipla-
za and General scenarios, using both opti-
mizations (MT + FS), the execution time
of the TDM is near the 33.3 ms per frame
(noted in the graph) required to achieve a 30
fps throughput. For such scenarios, near 5
% and 25 % performance improvement was
experienced, respectively, compared to the
baseline performance of the TDM.

For the SoquelAve scenario, a more
significant improvement was achieved.
Compared to the baseline implementation a
1.32 x speedup improvement was achieved
using the MT optimization. Considering
MT + FS, the speedup reached was 1.76 x.
Despite this performance improvement, the
maximum throughput reached is about 15
fps, far below the desired 30 fps constraint.
This is due to the high vehicle density
found in this scenario, which, as previously
discussed, increases the computational re-
quirements for detection and tracking.

A detailed analysis of the optimized
TDM when processing the SoquelAve sce-
nario shows that the individual execution
time of the Retriever, Detector, and Tracker
stages are 20.4 ms, 17.1 ms, and 26.3 ms,
respectively. This means that none of the in-
dividual stages of our TDM reaches more
than 33.3 ms of the per-frame available exe-
cution time if a 30 fps throughput is requi-
red. The entire TDM can be further modi-
fied to adopt a pipeline implementation in a
daisy chain fashion, in which each stage can
be allocated to an individual computing en-
gine. This will enable us to get higher throu-
ghput by sacrificing a small initial latency
of 3 frames.

Conclusions

In this work, we proposed a TDM
based on video feeds from road cameras

running on an SoC-based edge computing
device. We tested our TDM with three dif-
ferent road scenarios, each of them with dif-
ferent traffic metrics.

With the optimizations proposed, our
TDM delivered a performance near to 30
fps for scenarios with low and moderate
traffic. For dense scenarios, our final TDM
improved 76 % with respect to the base-
line implementation but achieved a 15 fps
throughput.

Further optimizations will consider
using a low-power multi-core platform in
which each stage of the TDM can be deplo-
yed to a single-core.

Acknowledgments

This work was possible thanks to the
Costa Rica Institute of Technology (ITCR),
particularly the Mobility Program for stu-
dents and professors.

Conflict of Interest

The authors declare no competing
interests.

Author contribution statement

All the authors declare that the final
version of this paper was read and approved.

The total contribution percentage for
this paper’s conceptualization, preparation,
and correction was as follows: L.L.V., 55
%; and J.C.G., 45 %.

Data availability statement

The data supporting the results of this
study will be made available by the corres-
ponding author, L.L.V., upon reasonable
request.

http://dx.doi.org/10.15359/ru.36-1.39
https://creativecommons.org/licenses/by-nc-nd/3.0/deed.en
https://www.revistas.una.ac.cr/index.php/uniciencia
mailto:revistauniciencia%40una.cr?subject=

Luis Gerardo León-Vega • Jorge Castro-Godínez

http://dx.doi.org/10.15359/ru.36-1.39
E-ISSN: 2215-3470

CC: BY-NC-ND

U
N

IC
IEN

C
IA

 Vol. 36, N
°. 1, pp. 1-9. January-D

ecem
ber, 2022 •

 w
w

w.revistas.una.ac.cr/uniciencia •
 revistauniciencia@

una.cr

620

References

Bolme, D. S., Beveridge, J. R., Draper, B. A., & Lui,
Y. M. (2010). Visual object tracking using
adaptive correlation filters. IEEE Computer
Society Conference on Computer Vision and
Pattern Recognition, 2544-2550. IEEE. ht-
tps://doi.org/10.1109/CVPR.2010.5539960

California Department of Transportation (Caltrans).
(n. d.). Soquel Ave. Santa Cruz, California,
United States of America. https://cruz511.
org/drive/traffic-conditions/traffic-cameras/

D’Andrea, E., Ducange, P., Lazzerini, B., & Mar-
celloni, F. (2015). Real-Time Detection of
Traffic From Twitter Stream Analysis. IEEE
Transactions on Intelligent Transportation
Systems, 16, 2269-2283. IEEE. https://doi.
org/10.1109/TITS.2015.2404431

Giridharan, E. N., Kadaieaswaran, M., Arunprasa-
th, V., & Karthika, M. (2017, February). Big
Data Solution for Improving Traffic Manage-
ment System with Video Processing. Inter-
national Journal of Engineering Science and
Computing, 7(2), 4606–4609.

Hall, F. D. (1992). Traffic Stream Characteristics.
Federal Highway Administration. https://
www.fhwa.dot.gov/publications/research/
operations/tft/chap2.pdf

Ministerio de Obras Públicas y Transportes. (n. d.).
Cámaras viales CR. https://www.camarasvia-
lescr.com.

Samie, F., Bauer, L., & Henkel, J. (2019). From
Cloud Down to Things: An Overview of Ma-
chine Learning in Internet of Things. IEEE
Internet of Things Journal, 6(3), 4921-4934.
https://doi.org/10.1109/JIOT.2019.2893866

Sidiroglou-Douskos, S., Misailovic, S., Hoffmann,
H., & Rinard, M. (2011). Managing Perfor-
mance vs. Accuracy Trade-Offs with Loop
Perforation. 19th ACM SIGSOFT Symposium
and the 13th European Conference on Foun-
dations of Software Engineering,124–134. ht-
tps://doi.org/10.1145/2025113.2025133

Viola, P., & Jones, M. (2001). Rapid o ject detec-
tion using a boosted cascade of simple fea-
tures. IEEE Computer Society Conference
on Computer Vision and Pattern Recognition
(pp. 511-518). IEEE. https://doi.org/ 10.1109/
CVPR.2001.990517

Yu, W., Liang, F., He, X., Hatcher, W. G., Lu, C.,
Lin, J., & Yang, X. (2017). A Survey on the
Edge Computing for the Internet of Things.
IEEE Access, 6, 6900-6919. https://doi.
org/10.1109/ACCESS.2017.2778504

Zhu, L., Yu, F., Wang, Y., Ning, B., & Tang, T.
(2019). Big Data Analytics in Intelligent
Transportation Systems: A Survey. IEEE
Transactions on Intelligent Transportation
Systems, 383-398. https://doi.org/10.1109/
TITS.2018.2815678

Measuring Traffic Dynamics at the Edge (Luis Gerardo León-Vega • Jorge Castro-Go-
dínez) Uniciencia is protected by Attribution-NonCommercial-NoDerivs 3.0 Unported

(CC BY-NC-ND 3.0)

http://dx.doi.org/10.15359/ru.36-1.39
https://creativecommons.org/licenses/by-nc-nd/3.0/deed.en
https://www.revistas.una.ac.cr/index.php/uniciencia
mailto:revistauniciencia%40una.cr?subject=
https://doi.org/10.1109/CVPR.2010.5539960
https://doi.org/10.1109/CVPR.2010.5539960
https://cruz511.org/drive/traffic-conditions/traffic-cameras/
https://cruz511.org/drive/traffic-conditions/traffic-cameras/
https://doi.org/10.1109/TITS.2015.2404431
https://doi.org/10.1109/TITS.2015.2404431
https://www.fhwa.dot.gov/publications/research/operations/tft/chap2.pdf
https://www.fhwa.dot.gov/publications/research/operations/tft/chap2.pdf
https://www.fhwa.dot.gov/publications/research/operations/tft/chap2.pdf
https://www.camarasvialescr.com
https://www.camarasvialescr.com
https://doi.org/10.1109/JIOT.2019.2893866
https://doi.org/10.1145/2025113.2025133
https://doi.org/10.1145/2025113.2025133
https://doi.org/ 10.1109/CVPR.2001.990517
https://doi.org/ 10.1109/CVPR.2001.990517
https://doi.org/10.1109/ACCESS.2017.2778504
https://doi.org/10.1109/ACCESS.2017.2778504
https://doi.org/10.1109/TITS.2018.2815678
https://doi.org/10.1109/TITS.2018.2815678
http://www.revistas.una.ac.cr/uniciencia
https://creativecommons.org/licenses/by-nc-nd/3.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/3.0/deed.en

	Introduction
	Background
	Average speed
	Flow rate
	Traffic density
	Occupancy
	A Traffic Dynamics Meter
	Baseline Performance
	Optimizations
	Evaluation

	Button 2:
	Página 1:

	Button 3:
	Página 1:

