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Abstract 

This work aims to measure the impact of approximate computing on a case study of traffic dynamics metering 
on a System-on-Chip edge computing device. Firstly, the study proposes a baseline implementation of the 
metering system in C++. To analyze the application in detail, study profiled the baseline using a built-in 
instrumented profiler, presenting the overall performance of each of its parts. During the hotspot analysis, 
some parts had optimization opportunities exploitable by multi-threading and approximate computing 
techniques, particularly frame skipping, which is inspired by the loop perforation approximate technique. 
The first optimization employed was multi-threading, which led to a 1.32x speedup on the application 
without introducing errors in the metrics. Then, the meter was optimized by using frame skipping. This 
work demonstrated that adaptatively modifying the number of frames skipped improved the error in the 
final metrics compared to keeping it fixed. In terms of performance, the frame skipping brought the overall 
speed up to 1.76x. Approximate computing, in particular, frame skipping, managed to contribute up to 
25% of the overall speedup, managing to accelerate the meter from 8.7 frames per second to 15 fps in the 
most critical case in exchange for some numerical error on the final metrics.
Keywords: traffic dynamics meter; edge computing; approximate computing

Resumen 

El objetivo de este trabajo es medir el impacto de la aplicación de técnicas de computación aproximada 
sobre un caso de estudio de implementación de un medidor de la dinámica de tráfico vehicular en una 
unidad computacional basada en un sistema embebido. El estudio parte de una implementación inicial 
del medidor hecha en C++. Para el análisis de la aplicación, la implementación inicial se perfila con un 
perfilador empotrado en el mismo código, que muestra información detallada de cada una de las partes. 
Durante el análisis de consumo, se encontraron partes optimizables con paralelismo a nivel de hilos y 
técnicas de computación aproximada como omisión de recuadros, que es una técnica inspirada en la 
perforación de lazos. La primer optimización realizada fue la implementación multihilo, que logró acelerar 
la aplicación 1.32 veces sin introducir errores en los resultados. Posteriormente, la implementación fue 
optimizada con la omisión de recuadros. Durante el desarrollo de este trabajo, se demuestra que modificar 
el número de recuadros omitidos de forma dinámica en tiempo de ejecución mejora considerablemente 

*Corresponding author
Luis Gerardo León-Vega,  lleon95@estudiantec.cr,  https://orcid.org/0000-0002-3263-7853
Jorge Castro-Godínez,  jocastro@tec.ac.cr,  https://orcid.org/0000-0003-4808-4904
1	 Electronics Engineering School, Instituto Tecnológico de Costa Rica, Cartago, Costa Rica.

https://www.revistas.una.ac.cr/index.php/uniciencia
mailto:revistauniciencia%40una.cr?subject=Uniciencia
http://dx.doi.org/10.15359/ru.36-1.39
https://creativecommons.org/licenses/by-nc-nd/3.0/deed.en
https://publica2.una.ac.cr/revistas/uniciencia/36(1)/MP3/Art-39-Ing.mp3
https://publica2.una.ac.cr/revistas/uniciencia/36(1)/MP3/Art-39-Esp.mp3
mailto:lleon95%40estudiantec.cr?subject=
https://orcid.org/0000-0002-3263-7853
mailto:jocastro%40tec.ac.cr?subject=
https://orcid.org/0000-0003-4808-4904
https://www.euna.una.ac.cr/index.php/EUNA
https://www.una.ac.cr/


Luis Gerardo León-Vega • Jorge Castro-Godínez

http://dx.doi.org/10.15359/ru.36-1.39
E-ISSN: 2215-3470

CC: BY-NC-ND

U
N

IC
IEN

C
IA

 Vol. 36, N
°. 1, pp. 1-9. January-D

ecem
ber, 2022 • 

 w
w

w.revistas.una.ac.cr/uniciencia • 
 revistauniciencia@

una.cr

613

el error introducido comparado a mantener constante el número de recuadros omitidos. La combinación 
de ambas optimizaciones concluyó en una implementación 1.76 veces más rápida, donde la aplicación de 
computación aproximada mediante omisión de recuadros contribuyó hasta en un 25% sobre el total de la 
mejora, acelerando el medidor de 8.7 recuadros por segundo a 15 en el escenario más crítico a cambio de 
la introducción de errores numéricos.
Palabras clave: Medición de dinámica vehicular, computación en el Edge, computación aproximada.

Resumo 

O objetivo deste trabalho é medir o impacto da aplicação de técnicas de computação aproximada em um 
estudo de caso da implementação de um medidor de dinâmica de tráfego de veículos em uma unidade 
computacional baseada em um sistema embarcado. O estudo começa a partir de uma implementação 
inicial do medidor feita em C++. Para a análise da aplicação, a implementação inicial é perfilada com um 
perfilador incorporado no próprio código, que exibe informações detalhadas sobre cada uma das partes. 
Durante a análise de consumo, foram encontradas peças otimizáveis com paralelismo em nível de thread e 
técnicas de computação aproximada, como o salto de quadros, que é uma técnica inspirada na perfuração de 
laço. A primeira otimização realizada foi a implementação multithread, que conseguiu acelerar a aplicação 
em 1,32 vezes sem introduzir erros nos resultados. Posteriormente, a implementação foi otimizada com 
o salto de quadros. Durante o desenvolvimento deste trabalho, mostra-se que modificar a dinâmica do
número de salto de quadros em tempo de execução melhora consideravelmente o erro introduzido em
comparação com a manutenção constante do número de salto de quadros. A combinação de ambas as
otimizações resultou em uma implementação 1,76 vezes mais rápida, onde a aplicação da computação
aproximada por meio do salto de quadros contribuiu com até 25% da melhoria total, acelerando o medidor
de 8,7 quadros por segundo para 15 no cenário mais crítico, em troca da introdução de erros numéricos.
Palavras-chave: Medição da dinâmica de veículos, computação de borda, computação aproximada.

Introduction

As many other countries, Costa Rica 
faces a severe traffic congestion problem, 
particularly in the great metropolitan area 
(GAM). The growing number of vehicles 
causes dense traffic jams on main roads, and 
it has increased by 40 % of the mobilization 
time along the GAM in the last five years.

Finding an integral solution to this 
problem requires automatic mechanisms to 
estimate traffic dynamics. A Traffic Dynam-
ics Meter (TDM) is an application used to de-
termine traffic parameters, such as average 
speed, traffic density, and occupancy (Hall, 
1992). A TDM is commonly implemented 

using cloud computing: remote cameras 
capture video streams sent over the net to 
distant servers to be processed (Zhu, Yu, 
Wang, Ning, & Tang, 2019). The informa-
tion a TDM provides can help define traffic 
optimization approaches, for instance, by 
adapting traffic lights intervals and enabling 
reversible and exclusive lanes for public 
transport. Figure 1 depicts a TDM fed with 
a live video of a road.
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Figure 1. Example of a Traffic Dynamics Meter (TDM). 
This TDM detects vehicles (blue zone), estimates traffic 
flow (green zone), and determines traffic density (red zone), 
as traffic speed is computed alongside these zones. This road 
feed corresponds to Soquel Ave in Santa Cruz, California. 
(California Department of Transportation (Caltrans)).
Note: Caltrans Streaming Video Locations. Caltrans. Retrieved (2018).

Background
Diverse approaches have 

been proposed to implement 
TDMs based on different data ac-
quisition techniques, algorithms, 
and system architectures. One ap-
proach is based on big data (Zhu, 
Yu, Wang, Ning, & Tang, 2019). 
The main idea is to capture and ex-
ploit data from different sources, 
such as video cameras, on-board 
car sensors, on-road sensors, and 
even social networks (D'Andrea, 
Ducange, Lazzerini, & Marcel-
loni, 2015). All acquired data is 
uploaded to the cloud, where a 
group of servers and algorithms 
perform computations to obtain 
traffic dynamics estimations.

Other approaches simplify the complex-
ity of the TDMs by just using on-road sensors, 
such as cameras, light and ranging detection 
(LIDAR), ultrasonic, and acoustic sensors. 
For instance, TDMs based on computer vision 
have been reported in the literature about this 
topic (Giridharan, Kadaieaswaran, Arunpra-
sath, & Karthika, 2017). Taking advantage of 
the current cameras used for reporting traffic 
conditions, especially in newscasts, measuring 
the traffic density at intersections is possible.

For the case of video-based TDMs, 
four relevant traffic metrics have been mod-
eled and reported in the literature (Hall, 
1992): average speed ( ), traffic flow (q), 
density (𝜆), and occupancy (o).

Average speed

It is the average speed of the vehicles 
during a time-lapse:

As technology moves forward, it is no 
longer foreseen to entirely depend on remote 
servers for data-intensive processing (Yu, et 
al., 2017). Edge computing has emerged to 
offload the computational stress away from 
the centralized cloud by distributing and 
transferring computation to individual smart 
nodes (Yu, et al., 2017), bringing the process-
ing where the information is obtained. For 
instance, IoT nodes are expected to perform 
partial, or even complete, machine learning 
applications despite their computing pow-
er and energy constraints (Samie, Bauer, & 
Henkel, 2019). In the context of a TDM, edge 
nodes could perform all sensing and process-
ing required and transmit only relevant infor-
mation to a centralized server in the cloud.

Contribution: This work describes 
a case study of a video-based TDM imple-
mented on an SoC-based edge computing 
platform. Improving its performance su-
pposed exploiting approximate computing, 
a novel design paradigm for error-tolerant 
applications, and thread execution.
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where

Here N  is the number of sampled vehi-
cles, and xj is the physical position at the tj time.

Flow rate

It represents how many vehicles are 
crossing an imaginary line (or limit) per 
sample period T, defined as:

Traffic density
It is the number of cars per unit of 

length:

where L is the physical distance mea-
sured or estimated from the images.

Occupancy

It is the average time in which a vehi-
cle is analyzed:

where t1,i and t2,i are the times when the i – th 
vehicle enters and exits from the 
analysis zone, respectively.

A Traffic Dynamics 
Meter

This work proposes a 
TDM using data from videos, 
particularly from free-to-access 

camera feeds from roadsides, to estimate 
the previously defined traffic metrics. Figu-
re 2 depicts the main stages of this TDM. 
The Retriever stage takes each video frame, 
converts it to grayscale, and applies filtering 
and morphological operators. According to 
the road and camera feed, this stage uses 
predefined masks to define regions of inte-
rest in the scene, particularly for detection 
and tracking. The Detector stage identifies 
vehicles in the detection zone using Haar-li-
ke features (Viola & Jones, 2001) and pro-
duces an array of detected vehicles. For 
such an array, the Tracker stage provides a 
new tracker for each vehicle in the scene. As 
depicted in Figure 2, the number of trackers 
changes dynamically as the total number of 
vehicles being tracked changes. Also, trac-
kers for the previously detected vehicles are 
refreshed with each new video frame. This 
tracking is performed using MOSSE filters 
(Bolme, Beveridge, Draper, & Lui, 2010). 
Finally, the Meter stage collects new vehi-
cle positions and extracts metrics for each 
one, and it calculates the global flow, densi-
ty, occupancy, and average speed.

Figure 2. Block diagram of the main components in our 
proposed TDM.
Note: Own source.

Baseline Performance

The TDM proposed was implemented 
using C++ and OpenCV (version 3.3.0); it 
was deployed on a Zynq XC7Z020, an off-
the-shelf SoC available in the ZedBoard 
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development platform. We evaluated the 
performance of this TDM with video sam-
ples from three different test scenarios: 
two camera feeds from roads of San José, 
Costa Rica, here referred to as General and 
Multiplaza (Ministerio de Obras Públicas y 
Transportes, n.d.); and a third camera feed 
from Soquel Ave, in Santa Cruz, Califor-
nia, here referred as SoquelAve (California 
Department of Transportation (Caltrans)). 
Samples of these camera feeds are present-
ed in Figures 3.a, 3.b, and 3.c, respectively. 
Each scenario presents different traffic dy-
namics, which leads to different detection 
and tracking effort. General represents a 
low traffic density with high-speed vehicle 
flow. On the other hand, SoquelAve presents 
a high density with moderate speed. Multi-
plaza is an intermediate scenario.

evaluation, the queue of detected vehi-
cles was processed in serial. Considering 
a requirement of 30 fps, the current exe-
cution time required per frame is above 
this constraint for the three scenarios. In 
the experimentation, the time required by 
the Retriever stage is almost constant for 
these scenarios. However, the Detector and 
Tracking stages consume most of the execu-
tion time, ranging from 27 % to 79 %, and 
from 13 % to 225 % of the entire processing 
time per frame, respectively. As depicted, 
the required time for actually estimating the 
traffic dynamic metrics is negligible.

Considering these scenarios, the de-
tection effort in General is caused by false 
positives during the first stages of the de-
tection. However, its tracking requirement 
is smaller with respect to the other two 
scenarios due to a lower traffic density. In 
SoquelAve, more vehicles are detected and 
tracked along the region of interest, which 

Figure 3. Test scenarios are used in the scope of this work and the execution profile of 
TDM for them. The execution time for each stage of the TDM presented is relative to a 
frame period (1/fps). A frame rate of 30 fps is defined as a performance constraint.
Note: Cámaras Viales CR. Cámaras Viales CR. Retrieved (2018).

An execution profile of the TDM is 
presented in Figure 1.d for these three test 
scenarios. For this baseline performance 
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is reflected in a high execution time required 
for each frame. Multiplaza has the least de-
tection, but more tracking effort compared 
to General. In this case, the detection dis-
cards more elements early but tracks more 
vehicles due to a higher density.

The implementation of the proposed 
TDM deals with several implementation 
challenges, for instance, rotation, geometric 
transformations, scaling of the vehicles, and 
light variances in the scene. This was con-
sidered when selecting object detection and 
tracking algorithms. Haar-like features were 
more suitable for object detection than Local 
Binary Patterns (LBP). Although LBP were 
faster than Haar-like features (2.3x), its de-
tection accuracy was lower (about 5 %).

Object tracking techniques are emplo-
yed to complement the detection and make 
it more robust to catch false negative cases. 
Thus, once the application detects a vehicle, 
the Tracker is in charge of analyzing it in 
the following frames. One requirement for 
object tracking is transformation invariance. 
Adaptive-kernel trackers are used for their 
capability to adapt to the object transforma-
tion over time if the object does not change 
suddenly. The MOSSE filter adapts its kernel 
according to a valid detection, which helps 
the Tracker catch most of the transformations 
of the object during the video sequence. If 
multiple objects are detected, the same num-
ber of trackers are required, leading to linear 
growth in the computational requirement.

Optimizations

To improve the performance of our 
TDM, we explored two techniques at the soft-
ware level: frame skipping and multi-thread-
ed execution for object tracking.

Frame skipping: In dense traffic, ve-
hicles do not move as fast as they do on a free 
road, affecting the traffic density. Inspired 

by loop perforation (Sidiroglou-Douskos, 
Misailovic, Hoffmann, & Rinard, 2011), 
an approximate computing technique, and 
considering the traffic density metric, we 
propose to save execution time by skipping 
frames to be processed. We explored two 
approaches for frame skipping. The first 
considers a fixed number of frames to be 
skipped in-a-row. The second adjusts this 
number dynamically, considering the traffic 
density metric as a reference. The number 
of frames f to be skipped with this dynamic 
approach can be defined as:

where 𝜆 is the last known density, and 𝜆i are 
the minimum and maximum traffic density 
values reported for a video stream. The Fmax 
is the maximum number of frames that can be 
skipped without exceeding a given maximum 
error with a fixed approach. We use relative 
error RE as error metric, calculated as follows:

where M corresponds to one of the tra-
ffic metrics. For each scenario, the accu-
rate value for each metric was manually 
determined.

Both frame skipping approaches im-
pact the accuracy of the estimations per-
formed by our TDM, as depicted in Figure 
4 for the case of SoquelAve. For the fixed 
approach, 3 and 2 frames were skipped for 
the Detector and Tracker stage, respectively. 
For the dynamic one, Fmax was selected, such 
as RE < 20 % for all the metrics. As shown, 
even the baseline implementation is not en-
tirely accurate, and it presents errors with 
respect to a golden estimation. The fixed 
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approach improves 
the average speed 
and occupancy esti-
mations regarding the 
baseline; however, it 
significantly increas-
es the error for flow 
and density. The dy-
namic approach im-
proves the metrics es-
timations concerning 
the baseline, except for average speed.

using FFT, Peak-to-Sidelobe Ratio (PSR) 
computation, and filter update. This last 
step is only executed if PSR > th, where th 
= 5.7 in the MOSSE filter implementation 
of OpenCV.

The computing effort spent by the 
filter update is comparable to the other 
previous steps performed during the 
tracking. Hence, the multi-thread opti-
mization consists in using an additional 
thread, from the standard C++ library 
to compute the filter updates passed by 
a queue as soon as the thresholding has 
been applied and keeping the other steps 
of the Tracking stage on the main thread. 
Thus, the correlation and the filter update 
work in a pipeline manner, enhancing the 
time-to-solution for each tracker.

Evaluation

Figure 5 highlights the performance 
improvement obtained by executing our 
TDM with multi-thread object tracking 

(MT) and frame skip-
ping (FS). For the 
case of FS, we have 
used the dynamic ap-
proach as, in general, 
it provides metric es-
timations with small-
er errors.

Figure 4. Effect of frame skipping in the accuracy of traffic 
dynamic metrics. These results correspond to the SoquelAve 
scenario, which is the worst-case scenario.
Note: Own source.

It is interesting to notice that approxi-
mate implementations of our TDM can pro-
duce better traffic metrics estimations. To 
understand this, it is required to analyze the 
effects of a tracking failure within the detec-
tion zone. Under certain conditions, such as 
vehicle rotation or light variance, the trackers 
cannot find the car and refresh themselves. 
This results in trackers stuck within the de-
tection zone, affecting the detection of new 
vehicles. This issue happens less frequently 
when applying a frame skipping technique 
since some cars are detected later than the 
baseline, enhancing the tracking. It is worth 
mentioning that density and flow metrics 
depend on the total vehicles tracked and the 
speed and occupancy of the tracking itself.

Multi-Thread Object Tracking: As 
previously discussed, a new tracker is re-
quired each time the Detector stage finds a 
vehicle. Each tracker performs several op-
erations: frame preprocessing, correlation 

Figure 5. Runtime optimization for our TDM implementation with 
multi-thread object tracking (MT) and frame skipping (FS).
Note: Own source.
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As it can be noticed, for the Multipla-
za and General scenarios, using both opti-
mizations (MT + FS), the execution time 
of the TDM is near the 33.3 ms per frame 
(noted in the graph) required to achieve a 30 
fps throughput. For such scenarios, near 5 
% and 25 % performance improvement was 
experienced, respectively, compared to the 
baseline performance of the TDM.

For the SoquelAve scenario, a more 
significant improvement was achieved. 
Compared to the baseline implementation a 
1.32 x speedup improvement was achieved 
using the MT optimization. Considering 
MT + FS, the speedup reached was 1.76 x. 
Despite this performance improvement, the 
maximum throughput reached is about 15 
fps, far below the desired 30 fps constraint. 
This is due to the high vehicle density 
found in this scenario, which, as previously 
discussed, increases the computational re-
quirements for detection and tracking.

A detailed analysis of the optimized 
TDM when processing the SoquelAve sce-
nario shows that the individual execution 
time of the Retriever, Detector, and Tracker 
stages are 20.4 ms, 17.1 ms, and 26.3 ms, 
respectively. This means that none of the in-
dividual stages of our TDM reaches more 
than 33.3 ms of the per-frame available exe-
cution time if a 30 fps throughput is requi-
red. The entire TDM can be further modi-
fied to adopt a pipeline implementation in a 
daisy chain fashion, in which each stage can 
be allocated to an individual computing en-
gine. This will enable us to get higher throu-
ghput by sacrificing a small initial latency 
of 3 frames.

Conclusions

In this work, we proposed a TDM 
based on video feeds from road cameras 

running on an SoC-based edge computing 
device. We tested our TDM with three dif-
ferent road scenarios, each of them with dif-
ferent traffic metrics.

With the optimizations proposed, our 
TDM delivered a performance near to 30 
fps for scenarios with low and moderate 
traffic. For dense scenarios, our final TDM 
improved 76 % with respect to the base-
line implementation but achieved a 15 fps 
throughput.

Further optimizations will consider 
using a low-power multi-core platform in 
which each stage of the TDM can be deplo-
yed to a single-core.
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