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Abstract
The ability to make short or long term predictions is at the heart of much of science. In the last 
decade, the data science community have been highly interested in foretelling real life events, 
using data mining techniques to discover meaningful rules or patterns, from different data 
types, including Time Series. Short-term predictions based on “the shape” of meaningful rules 
lead to a vast number of applications. The discovery of meaningful rules is achieved through 
efficient algorithms, equipped with a robust and accurate distance measure. Consequently, it 
is important to wisely choose a distance measure that can deal with noise, entropy and other 
technical constraints, to get accurate outcomes of similarity from the comparison between two 
time series. In this work, we do believe that Dynamic Time Warping based on Cubic Spline 
Interpolation (SIDTW), can be useful to carry out the similarity computation for two specific 
algorithms: 1- DiscoverRules() and 2- TestRules(). Mohammad Shokoohi-Yekta et al developed 
a framework, using these two algoritghms, to find and test meaningful rules from time series. 
Our research expanded the scope of their project, adding a set of well-known similarity search 
measures, including SIDTW as novel and enhanced version of DTW.
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Resumen
La capacidad de hacer predicciones a corto o largo plazo está en el corazón de gran parte de 
la ciencia. En la última década, la comunidad de ciencia de datos ha estado muy interesada 
en predecir eventos de la vida real, utilizando técnicas de minería de datos para descubrir 
reglas o patrones significativos, de diferentes tipos de datos, incluidas las series temporales. 
Las predicciones a corto plazo basadas en “la forma” de reglas significativas conducen a 
una gran cantidad de aplicaciones. El descubrimiento de reglas significativas se logra a 
través de algoritmos eficientes, equipados con una medida de distancia robusta y precisa. En 
consecuencia, es importante elegir sabiamente una medida de distancia que pueda lidiar con 
el ruido, la entropía y otras restricciones técnicas, para obtener resultados precisos de similitud 
a partir de la comparación entre dos series de tiempo. En este trabajo, creemos que Dynamic 
Time Warping (DTW) basada en la interpolación de splines cúbicos (SIDTW) puede ser útil 
para llevar a cabo el cálculo de similitud para dos algoritmos específicos: 1- DiscoverRules() 
y 2- TestRules(). Mohammad Shokoohi-Yekta et al. desarrollaron un marco, utilizando estos 
dos algoritmos, para encontrar y probar reglas significativas de series de tiempo. Nuestra 
investigación amplió el alcance de su proyecto, agregando un conjunto de medidas de 
búsqueda de similitud bien conocidas, incluyendo SIDTW como una versión novedosa y 
mejorada de DTW.

Introduction
Prediction and forecasting have been a topic of great interest in the data mining community. 
Most of the work in the literature has dealt with discrete objects such as: keystrokes, database 
queries, medical interventions and web clicks [19, 32]. However, prediction may also have 
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great utility in real-valued time series. We briefly consider two clear examples. The first one fits 
in the robotic interaction field, where researches noted the importance of enabling robots with 
a short-term predictive capacity, to control the impedance forces generated by its interaction 
with humans [10]. Secondly, mining real time weather data to discover predictive rules. The 
Doppler radar technology introduced in the last two decades, has increased the mean lead time 
for tornado warnings from 5.3 to 9.5 minutes. But progress seems to have stalled. Around 26% 
of tornados within the US occurs without warning [3]. McGovern et al in [3], argued that further 
improvements will come not only from new sensors, but also from yet-to-be-invented algorithms 
that can examine existing data to discover predictive rules.
Most of the current work has attempted to predict the future based on the current value of a 
stream [21]. The actual values are, in fact, nearly irrelevant, but the shape of the current pattern 
may generate better predictive rules.
There is a critical distinction between forecasting and rule-based prediction. The forecasting 
approach is typically always-on, it predicts values at every time step. In contrast, “rule-based” 
predictions monitor the incoming data at each time step, but only occasionally, makes a 
prediction about an imminent occurrence of a pattern. On this line, Mohammad Shokoohi-Yekta 
et al in [28], proposed a rule discovery framework to identify patterns in time series. All these 
discovered rules, are generated from a ranked candidate list of motifs: a subsequence of the 
time series is identified twice or more. The motif classification algorithm is computed using 
Euclidean distance, a widely-known similarity measure [7].
The present work makes four main contributions. First, we upgraded the rule discovery framework 
created by Mohammad Shokoohi-Yekta et al [28], by incorporating three well-known similarity 
measures: 1- Manhattan, 2- Minkowski and 3- Dynamic Time Warping.
Second, we added an enhanced and novel version of Dynamic Time Warping (DTW), proposed 
by the authors in [14], which uses a Cubic Spline Interpolation technique that is capable to 
produce much less singularities and obtain the best warping path; especially when time series 
are not suitable for the standard DTW.
Third, we utilized the upgraded version of the framework to carry out a benchmarking for all 
the these similarity measures. This effort intended to proof that DTW based on Cubic Spline 
Interpolation (SIDTW), can be as efficient as the Euclidean distance to discover meaningful rules 
in time series.
Finally, we developed a new functional layer upon the framework, to automate the discovery and 
testing of rules from time series, given a particular similarity distance.
The remainder of the paper is structured as follows. Section two introduces the related work and 
the intuition behind this shape-based mechanism to identify potential rules in time series. The 
rule discovery framework is detailed in section three. The experiments have been developed to 
characterized each similarity measure running upon this framework, its results are discussed in 
section four. Finally, the conclusions of this research and its speculation about the future work 
are proposed in section five.

Background
In a set of papers ending in [25], Park and Chu suggested a rule finding mechanism for time 
series. Their algorithm was evaluated for speed, using random walk data. No evidence was 
reported that the algorithm could actually find generalizable rules in time series. The research 
done by Wu and colleagues in [33], did use a piecewise linear representation to support rule 
discovery in time series. They tested their algorithm on real (financial) data, reporting roughly 
68% “correctness of trend prediction”. The authors ran their algorithm on data provided by 
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others. When they ran their program using pure random walk data, they claimed to get again 
about same 68% correctness of trend prediction. The latter suggests that their original results 
did not outperform random guessing.
Probably of the most cited rule finding method found in the literature is [6]. This research 
quantizes the data with K-means clustering. The whole training dataset passes data over to 
the typical association rule discovery algorithm. A further set of corrective articles showed that 
there is an evident problem with the quantization step. In summary, any method that involves 
clustering the whole set of subsequences, is mis-driven to produce cluster centers that are 
independent of the data [16].
The work of Mohammad Shokoohi-Yekta et al, cited in [28], is the backbone of this research. 
They created a framework to discover and test rules on time series. The solution was designed 
to identify potential rules known as subsequence motifs (discoverRules()). A classification 
algorithm powered by Euclidean distance, produces predictive rules (testRules()) from all the 
motifs identified. 
While there are a vast list of distance measures in the literature, recent empirical evidence 
suggests that Euclidean distance is very difficult to beat [7]. The Euclidean distance is simple 
to implement, parameter free, fast to compute and also amiable to various data mining 
optimizations, such as indexing and early abandoning computation [23].
The authors in [28] also considered other distance measures such as: DTW, Swale, Spade 
and EPR [7]. They empirically claimed that none of these similarity measures actually helped 
to improve the accuracy, and even worse, most of them required a runtime at least an order of 
magnitude longer. 
In [35] the authors introduce an approximate algorithm called HierarchIcal based Motif 
Enumeration (HIME) to detect variable-length motifs with a large enumeration range in million-
scale time series. The authors show in the experiments that the scalability of the proposed 
algorithm is significantly better than that of the state-of-the- art algorithm. Moreover, the motif 
length range detected by HIME is considerably larger than previous sequence-matching 
based approximate variable-length motif discovery approach. They demonstrate that HIME can 
efficiently detect meaningful variable-length motifs in long, real world time series.
In this project, we study the accuracy obtained by different similarity measures, particularly 
through the implementation of DTW and SIDTW [27, 14].
The details about the rule discovery framework are presented in the following section.

Rule discovery framework
We are now in a position to develop all the required concepts to explain the rule discovery 
framework. First, we define a time series “antecedent” as a subsequence is triggered only if it is 
similar to the current sliding window.
In order for a candidate antecedent to be even considered as a rule precursor, it must occurs 
at least twice. We cannot generalize from a single instance of an event. This is the most basic 
definition of a time series motif [22].
As an antecedent is a precursor to an event, a predicted subsequence shape, which follows an 
antecedent within a specified time (the maxlag), is called the antecedent’s consequent.
The maxlag parameter encodes the fact that for a time series subsequence to be a meaningful 
consequent in a rule, it must occur within some acceptable time, after the rule’s antecedent has 
been detected. Without such a constraint on time, a consequent’s occurrence may be a mere 
coincidence.
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In principle, the threshold, the maxlag and antecedent could be hand chosen by a domain 
expert.
All the concepts described above can be formally summarized in 5 simple definitions: 

• Definition 1: the monitoring tasks over a time series is carry out by continuously extracting 
the sliding window, W. Given a positive constant t (threshold), and an antecedent time 
series Ra, a binary flag fired is set to TRUE if D (Ra, W)<t.

• Definition 2: a consequent is a time series subsequence that is predicted, to follow the 
detection of an antecedent within a given maxlag time step.

• Definition 3: the maxlag, is the maximum number of time steps allowed between a detected 
antecedent and its consequent.

• Definition 4: a time series rule, R, is a 4-tuple of Ra, Rc, maxlag, t.
• Definition 5: the split point is a ratio in the range (0, 1), which indicates the end point of the 

antecedent and the beginning of the consequent. 
Having defined time series rules and the supporting notation, we can describe the mechanism 
behind the rule discovery task. 

The Required Intuition Behind The Rule Discovery Process
A simple application example explains the basic cognitive process towards the discovery of 
meaningful rules in time series. We utilized an accelerometer to collect data from a device worn 
by a person, as he or she goes about daily activities. Let’s say, for instance, walk and use an 
elevator, as it is shown in Figure 1. 

Figure 1. A rule found from an accelerometer dataset by using an elevator.

A rule for an accelerometer dataset identifies the initial acceleration “bump” as going up in an 
elevator. Which must be eventually matched by the elevator stopping at a floor. This example 
shows a very easy rule to spot. The semicircular bump (antecedent subsequence - red 
highlighted) created by an elevator accelerating, must eventually be matched up, by a bump in 
the opposite direction (consequent subsequence - green highlighted) when the elevator brakes. 
The time lag (maxLag, set to 4 seconds) between these two events is highly variable. It depends 
on the number of floors serviced by the elevator.

The Rule Discovery Framework
Once the above concepts have been defined, the rule discovery framework can be logically 
divided into two main basic modules. The first one, called “Discover Rules”, was created to 
search rules from a given input training set, a split point value and a maxLag value. As it is 
shown in figure 2, the first section of the algorithm will invoke a discretization process, to extract 
all the potential rules (motifs). The evaluated subsequences are divided into antecedent and 
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consequent (using a split-point). The algorithm will slide each antecedent subsequence across 
the entire data set, searching for a similar shape, identified at least twice. 
This motif identification process is obtained as a result of a similarity computation between both 
subsequences: 1- a subset of the training set and 2- the antecedent subsequence that is being 
compared [28]. 

Figure 2. Diagram of the framework designed to discover and test rules.

The second module, called “Test Rules”, also detailed in figure 2, was created to score and 
classify any antecedent subsequence extracted from the “Discover Rules” module.
The scoring algorithm uses minimum description length (MDL). It uses two inputs parameters: 
1- a candidate time series and 2- an expected maxlag value. The function then returns three 
objects: an antecedent, a consequent and the “quality” score value of the resulting rule [28]. 
In the subroutine, we use a similarity distance measure to create a large set of candidate rules 
with their observed outcomes on the training data. We move from Euclidean distance to MDL to 
score these rules.
We consider the consequent of R, as a model (a set of hypothesis) to calculate the total number 
of bit-saves to predict other consequents segments. A larger number of bit-saves indicates 
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more accurate predictions. After discovering antecedent candidates, we consider their following 
subsequences as consequents. The procedure calculates the number of bits needed to record 
the differences between the consequent saved as a model and the subsequences following 
antecedent candidates [28].
Finally, the number of firings depends on the distance threshold chosen. A conservative (small) 
threshold is more likely to produce an accurate rule, but, it may miss opportunities when it could 
have fired and produce predictions that are at least much more better than random [28]. The 
motifs that fire the most during the testing process are the ones suggested as a meaningful rule.

Our Contribution To The Framework
There are four major contributions in this work. First, we endowed the existing framework with 
three well-known similarity distances: Manhattan, Minkowski, Dynamic Time Warping (DTW). 
Second, we added an enhanced and novel version of DTW called SIDTW, which was proposed 
by the authors in [14]. Third, we ran a benchmarking analysis to study the accuracy produced 
by all of these similarity distances. Finally, we developed an automated way to discover and test 
rules from time series, given a particular similarity distance.
The framework was initially implemented by using the Euclidean distance [7]. Given two 
time series Q and C of length n, where Q = q1, q2, q3, qi...qn and C = c1, c2, c3, ci...cn, the 
Euclidean distance is defined as . As was mentioned, the 
framework was also equipped with two Lp shaped-based distances, the Manhattan distance 
[7], defined as: . The Minkowski distance, formally implemented as 

, where p is an integer threshold.
In addition to the previous Lp shaped-based distances, we implemented an elastic-based version 
of DTW [27]. This efficient implementation of DTW was written in C  language. This standard 
version of DTW taken from [27], can be formally defined as , 
where W is the minimum path.
As it is known, this distance finds an optimal match between two sequences of feature vectors, 
which allows for stretched and compressed sections of the sequence [27].

Why SIDTW was proposed in this project?
Dynamic time warping (DTW) and derivative dynamic time warping (DDTW) are two robust 
distance measures for time series. The algorithm allows similar shapes to match even if they are 
out of phase in the time axis [27].
We added a new version of DTW based on cubic spline interpolation (SIDTW) [14], mainly based 
the educated assumption that its the level of accuracy was way superior than the other distance 
measures.
How does it work? The derivative of every point of the time series is computed by cubic spline 
interpolation. This method is utilized to replace the estimated derivatives in DDTW. After 
interpolation, SIDTW uses derivative-based sequences to represent the original time series, 
which is way better to describe the trend of the original time series and more reasonable to warp 
[14]. The authors in [14], empirically indicate that the quality of similarity measure, for the three 
warping methods, is nothing to do with the amount of warping [14]. They experimentally perform 
the proposed method and compared with the existing ones, which demonstrates that in most 
cases their approach not only can produce much less singularities and obtain the best warping 
path with shorter length but also, is an alternative version of DTW when time series datasets are 
not suitable for DTW to be measured.
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There is an index W proposed in [14] to indicate the warping level implied in the algorithm. For 
instance:  where K is the number of warping and m  is the length of time 
series. In this formula, it is clear that W is in direct proportion to K due to the constant length 
m. In addition to that, the small W is, the less amount of warping will be produced. The DTW 
algorithm will run prior any cubit spline interpolation activity. That should happens in order to 
avoid unnecessary warping.
The SIDTW algorithm can be presented as follows:

-  Step 1. Input two time series data sets, Q of length n and C of length m. Note that xi 
represents the time of X-axis and yj the data point value of the time series.

-  Step 2. Let boundary derivatives of Q and C be Mq1 = q2– q1, Mq1 = qn – qn-1, Mc1 = c2 - c1 
and Mcm = qm– qm-1 respectively. Step 3. Bring these parameters into the new cubic spline 
interpolation accordingly.

-  Step 4. Compute the derivatives function QS´(y) and CS´(y) for every point of both time 
series.

-  Step 5. Replace the values of di (q) and dj (c).
-  Step 6. Calculate the distance matrix and use the dynamic programming to figure out the 

minimum warping cost.
There are at least three main benefits in SIDTW: 1- the points with positive derivative in one 
sequence will align each other on the same trend, 2- in most cases, the length of the warping 
path will be shorter than the DDTW and DTW, including a less number of singularities as was 
already mentioned and 3- SIDTW is an alternative version of DTW. Therefore, the SIDTW measure 
the similarity of most of time series datasets but in any other case, DTW can be also use instead.
The experimental evaluation of all these distance measures is presented in the next section.

Experiments
In this section we evaluate the performance of each similarity measure that was ran to discover 
and test rules in time series in the upgraded framework. We compared both algorithms 
(discoveryRules and testRules). That allowed us to determine which similarity measures were 
generating the best possible results on each data set.
All of our experiments have ran on an Intel64 processor with approximately 2295 MHz, upon MS 
Windows 8.1 OS. In order to reproduce these experiments, the following software is required: 
IDE: Matrix Laboratory (MATLAB), version 9.1.0.44, 64-bit, IDE: RStudio, version 1.0.136, 64-bit, 
Libraries: PMCMR, nortest, TSdist version 3.3, proxy version 0.4-17, sampenc and RunRcode.

About the data sets that were utilized in this project
We did use the seven different datasets provided in [28]. There are two specific reasons for 
making that decision. The first one, is mainly to proof the veracity of their results, using the 
Euclidean distance as a reference. The second and most important reason, was lead by the 
consistency and the simplicity of studying the behavior of new distance measures against the 
same datasets.
A new dataset was generated to increase the impartiality level of the experiment. To achieve the 
latter, we use a time series generator described in [12]. The tool captures daily activity data in 
a time series format. This new dataset offer a new level of complexity, which can be defined by 
two different characteristics: 1- is the dataset with the smallest amount of data points and 2- it 
contains the highest degree of data level disorder or noise. The permutation entropy obtained 
from this dataset is observed in Figure 3. This metric was very useful to measure the degree of 
disorder found on each time series [31].
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Figure 3. Permutation entropy levels computed on each dataset.

An impartial sample of experimental datasets, should consider a variation in the number of data 
points of each dataset and different levels of disorder and permutation entropy. This combination 
of factors are imperatively required to categorize the complexity of each dataset and then quality 
of the experiment. [31]. The Figure 4, describes for instance, the number of data points on each 
dataset in this experiment. [31].

Figure 4. The number of data points on each dataset.

We are in a position to present the results that were obtained from each distance measure on 
every single dataset. In the more general case, we use a given distance between the predicted 
consequent and the F matching locations where the rule fired, a value we denote as Ferror (this is 
essentially the root-mean-squared error). Because this number is difficult to interpret by itself, we 
do the following: on the same testing set, using the same consequent, we fire the rule randomly, 
F times, and measure the distant between the predicted consequent and the F random locations. 
We denote this value as Rerror  (which is averaged over 1.000 random runs).
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The reported measure of quality then is just (Q = Ferror /Rerror). Values close to one suggest the 
rules are no better than random guessing and values significantly less than one indicate that 
there is a true structure in the data.
The hypothesis Q, is defined as the accuracy reported by the distance measure to find a 
meaningful rule in a particular dataset. Again, the size and the complexity of each dataset are 
considered relevant factors to achieve the expected quality in this experiment. Our hypothesis 
was tested by using the nonparametric test called Kruskal-Wallis [34]. The assumptions of one-
way ANOVA were not met (p-value = 0.4409, using a = 0.05). Due to the obtained results, we do 
believe that there is no strong statistical evidence to categorically support our hypothesis. The 
margins of these results are not significant. 
Despite the above given outcome, we want to highlight some interesting observations. In the 
Figure 5, the SIDTW distance measure did report higher accuracy levels (where Q average 
values close to zero, suggest a higher accuracy level), particularly when the number of data 
points on each dataset tended to increase. For instance, SIDTW has reported better results than 
the Euclidean distance, including the standard version of DTW.

Figure 5. Accuracy per distance measure.

The SIDTW did report also better results in presence of highest degrees of permutation entropy. 
As was shown in the Figure 6, this novel similarity measure, was even more tolerant than the 
Euclidean distance, to deal with higher entropy levels and report out, at the same time, the best 
average values of Q on each dataset. 
We ran the testRules() algorithm (based on the values obtained from discoverRules()), using 
all the distance measures on each dataset. As was mentioned, every distance measure was 
executed 1000 times on each dataset for this algorithm as well, in order to control the factors of 
the experiment and its consistency. Finally, we did a simple data normalization process (without 
losing precision), in order to get the average value of Q, for each combination of factors.
In Table 1, we present the average values of Q, for every factor. The green highlighted Q figures, 
on every row, represent the best results of a given similarity measure executed on each dataset. 
The red highlighted figure correspond to the worst possible value. As the Euclidean distance, 
SIDTW did report the best results of Q in three times. DTW in general, shows to be a reliable 
distance measure. At least as good as the Euclidean distance.



Tecnología en Marcha, 
Vol. 33, N.° 2, Abril-Junio 2020 147

Table 1. Average result of Q, per every combination of factors resulted from the testRules() algorithm. 

Distance

DataSets

Energy 
Disaggregation

Zebra Finch 
40 Days

Zebra Finch 
50 Days

Zebra Finch 
100 Days

Nasa 
Telemetry LeafHopper Data Activity 

Telemetry

Euclidean 0.5122 0.3915 0.2967 1.0000 0.2674 0.5981 0.3739

LP Manhattan 0.6047 0.5856 0.3214 0.9698 0.3097 0.5401 0.3456

LP 
Minkowsky 0.6140 0.5912 0.3353 0.9572 0.3096 0.5465 0.3234

DTW 0.4432 0.4635 0.3354 0.4570 0.3100 0.5375 0.2969

SIDTW 0.3724 0.4600 0.3330 0.4469 0.3010 0.5288 0.4771

Conclusions and future work
We have presented an upgraded version of a framework created in [28]. The tool discovers 
meaningful rules in time series using SIDTW. The major contribution of this research is the 
implementation of four new similarity measures: Lp Norm Manhattan, Lp Norm Minkowski, DTW 
and DTW based on Cubic Spline Interpolation (SIDTW). A brand new dataset was generated 
from the scratch to support the veracity of the experiments reported by the authors in [28] and 
increase the quality of our experiments. The experiments have been uploaded at [11]. The 
automated testing of motifs was integrated as a new module.
We ran a hypothesis testing to study the accuracy levels (Q), obtained from the utilization of 
SIDTW, as a novel distance measure proposed in [14]. This analysis showed that SIDTW is as 
good as the widely implemented Euclidean distance.
Finally, many other avenues can boots this research initiative to the next level. For example, 
exploring the insertion of new types of similarity distances, such as: elastic, lock-step and 
threshold-based [7]. Further metrics can be added: execution time, precision levels and 
efficiency. We considered to increase the scope of the framework adding others data mining 
duties such as outliers detection and clustering.
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