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Abstract
Developing newer satellite missions faces increased onboard software complexity. Next 
generations of small satellites need to enable the infrastructure for implementation of concurrent 
and deterministic onboard algorithms for mission coordination and control. Multi-agent-based 
architectures are a new developing approach adopted in the software engineering field due to its 
flexibility, scalability, and adaptability to dynamic operating environments. This paper describes 
the design and implementation of a deterministic multi-agent system framework to develop 
applications for highly constrained embedded computers used in small satellite missions. As 
a result of the implementation of this framework the user coding effort for describing complex 
onboard software applications is reduced up to 50% with minimum impact on CPU load and 
program memory allocation. This paper also shows a set of benchmarks that demonstrate not 
only the feasibility of MAS-based software for small satellite missions but its value to achieve 
aggressive development schedules.
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Resumen
El desarrollo de nuevas misiones satelitales se enfrenta a un incremento en la complejidad 
del software a bordo. Las próximas generaciones de satélites pequeños deben habilitar la 
infraestructura para la implementación de algoritmos a bordo concurrentes y deterministas 
para la coordinación y el control de la misión. Las arquitecturas basadas en multi agentes son 
un nuevo enfoque de desarrollo adoptado en el campo de la ingeniería de software debido a 
su flexibilidad, escalabilidad y adaptabilidad a entornos operativos dinámicos. Este artículo 
describe el diseño y la implementación de un framework basado en sistemas multi-agentes 
para desarrollar aplicaciones para computadoras embebidos con recursos altamente limitados 
que son utilizadas en pequeñas misiones satelitales. Como resultado de la implementación de 
este framework, el esfuerzo de codificación del usuario para escribir aplicaciones complejas 
de software a bordo se reduce hasta en un 50% con un impacto mínimo en la carga de la CPU 
y la asignación de la memoria del programa. Los resultados obtenidos en esta investigación 
demuestran no solo la viabilidad del software basado en MAS para misiones de satélites 
pequeños, sino también su valor para lograr planeamientos agresivos.

Introduction
Embedded computers are the core of any electronic system, and satellites are not the exception. 
In fact, satellite designers are adopting the use of distributed spacecraft architectures to improve 
their performance and making their subsystem’s integration easier and faster. The shift from a 
centralized computing architecture towards a distributed architecture offers new advantages. For 
example, it improves fault-tolerant capabilities by enabling resource sharing among subsystems 
[1]. Also, it is easier to reconfigure and to upgrade the onboard software on the fly, which brings 
flexibility in the mission operations [2] [3]. However, these new advantages come at a cost: the 
onboard software complexity of the space missions is increased. According to [4], the primary 
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cause of the growth in satellite software complexity comes from the mission requirements related 
to coordination and control-related tasks during the mission operation phase.  
Both coordination and control activities demand a deterministic (real-time) behavior to 
the computers onboard of the satellites. This onboard software is characterized by being 
autonomous. Thus, it can make decisions without human intervention with specific time 
constraints. In particular, spacecraft maneuvers and fault detection, identification and recovery 
tasks are the most critical features needed to ensure the safety of the spacecraft [5] [6]As the 
onboard coordination and control activities require a high degree of autonomy, the use of Multi-
Agent Systems (MAS) is proposed as a software architecture style to develop satellite software 
with intelligent capabilities [7]. The critical feature of this architectural style lies in its capacity 
for addressing problems by distributing them to different agents [8]. According to [9], an agent 
is an autonomous computational entity that is assigned to a specific role within the system, 
communicates with other agents and perceives their environment. A group of agents (MAS) work 
in a proactive sense to achieve a specific mission goal.
In general, most of the MAS-based applications do not use a standard platform or framework 
for its implementation [10]. However, there are several solutions available for MAS-based 
applications development.  Some of them are based on the specifications established by The 
Foundation for Intelligent Physical Agents (FIPA), for instance, JADE [11], SPADE [12],  and 
Mobile-C [13]. The main advantage of being a FIPA-compliant platform/framework is the ability 
of applications interoperability among different platform/frameworks. 
There are also other successful MAS-based non-FIPA compliant frameworks designs such 
BESA-ME [14], EmSBot [15] and ObjectAgent [3] that enable the implementation of embedded 
MAS-based software.
Despite that JADE is the most used MAS-based application development platform [16] and 
the JADE agent platform runtime’s memory footprint is around 100kb (making it suitable for 
embedded devices) [17], it does not fulfil the real-time requirements of the spacecraft system. 
Similarly, SPADE does not offer real-time support either. Moreover, Mobile-C framework runs on 
OSs that are not suitable for highly-constrained embedded platforms. 
Lastly, the above-mentioned non-FIPA compliant frameworks (BESA-ME, EmSBot and 
ObjectAgent), although successfully implemented, they do not discuss the implementation of 
the minimum technology required to build a MAS-based platform specified by FIPA.
Furthermore, as shown, there are several approaches of MAS-based platform/framework/
application implementations in embedded systems, but there are no reports on the literature 
about how the mapping methodology of an agent to a RTOS environment might affect the CPU’s 
load, power consumption and latency. 
Therefore, the purpose of this paper is to present a MAS framework that bridges the gap between 
real-time features and implementation based on the FIPA specifications. This framework is 
built based on a design strategy that considers the effect of the mapping on the CPU’s load, 
power performance and latency of the system. Multi-Agent Framework for Embedded Systems 
(MAES), is a FIPA-based framework with real-time capabilities designed to be suitable for highly 
constrained embedded devices used in computers for pocketqube satellites.
The outline of the paper is as follows: Section 2 describes the software architectures aspects 
considered for the design of MAES, then Section 3 focuses on the implementation strategy, 
specifically in the key components to make the platform FIPA-compatible. Section 4 shows a 
characterization of MAES using a set of applications with different levels of complexity to show 
the value of adopting MAS-based software design in small satellites missions. Finally, Section 5 
draws the main conclusions and discusses the future work intended. 
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Figure 1. Onboard Software Architecture for PocketQube Computer.

MAES Architecture
The development of a multi-agent systems framework for satellite systems responds to the need 
of having distributed and concurrent execution environment for autonomous onboard software 
execution. This section starts with a description of the satellite execution infrastructure, to 
continue with the MAES framework design. The end goal is to show the feasibility and value of 
adopting multi-agent-based software development approach for satellite software development.

Satellite Software Architecture
This paper considers a highly miniaturized satellite using the pocketqube form factor. As 
discussed in [16], this highly integrated spacecraft, with an approximated volume of 5cm x 5cm 
x 15 cm, consists of a distributed electronic system with three primary embedded computers 
for electrical power management, for attitude determination and control and for command and 
data handling tasks. All these computers are based on the MSP432P401R microcontroller that 
features an ARM Cortex-M4 processor capable of running multi-threading applications with the 
TI-RTOS operating system. In principle, this tiny satellite is capable of running distributed and 
concurrent software for its operation.
This work assumes that satellite’s onboard software (OBSW) can be modeled as a Multi-Agent 
System (MAS), and these agents are mapped into one of the pocketqube computers for their 
execution, so each of the onboard computers provides an execution platform for agents to 
live (logical containers). Either the agents or their private behavior functions can rely their 
execution on TI-RTOS threads called tasks. Also, this work takes as inputs the FIPA standards 
for implementing the MAS components. The software architecture model for this pocketqube 
mission is presented in figure 1, where the interface between different software layers is 
highlighted. MAES framework is implemented as a middleware module in charge of enabling the 
operation of the MAS based capabilities for a single pocketqube computer.
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Figure 2. MAES Class Diagram.

MAES Framework Design
A set of software components were engineered using object-oriented abstractions to provide 
with the required FIPA-based features in MAES framework. The core of the MAES design is 
the agent class that is an extension of the task module in the TI-RTOS. This class allows the 
composition of agents with one behavior supplied by the behaviors class. These behaviors 
can be either generic or composed, depending on the software requirements, which provides 
flexibility. Agents can interact with each other by sending and receiving messages. For that 
purpose, agents use the mailbox module from the TI-RTOS.
Agents also can be grouped into organizations, depending on the software requirements. For that 
purpose, the MAES organization class provides the abstractions required for agents to organize 
and execution within the MAES execution platform, that aggregates all the organizations living 
in the execution environment. Figure 2 shows the relationship of these classes within the MAES 
framework. Section 3 focuses on the implementation aspects of each class and their integration.

MAES Framework Implementation
The implementation of the MAES framework was carried out using the integrated development 
environment (IDE) Code Composer Studio (Version: 7.1.0.00016) with the Texas Instruments 
Compiler (Version: TI v16.9.1 LTS) and the XDCtools (Version: 3.32.0.06_core). 
The hardware platform provided for this research was the SimpleLinkTM MSP432P401R 
LaunchPadTM 
Development Kit. The microcontroller used by the development board is the MSP432P401R 
microcontroller (ARM Cortex-M4) running at 48MHz. Additionally, a Sensors Booster Pack Plug-
in Module was connected to the Launchpad. This module contains a light sensor, an infrared 
sensor, an Inertial Measurement Unit (IMU) (featuring an accelerometer and gyroscope), a 
magnetometer and an environmental sensor.
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Table 1. Class implementation for MAES components.

MAES Component MAES Class

Agent

Agent Class

Generic Behavior Class

Agent Organization Class

Agent Platform Agent Platform Class

Agent Management Service Agent Platform Class

Message Transport Service
Agent Platform Class

Agent Message Class

The framework was written using C++, which is an Object-Oriented Programming (OOP) 
Language. Table 1 shows that each of the mandatory FIPA components is implemented 
accordingly through different classes provided in MAES framework.

The following subsection describes in detail the implementation of each MAES class.

Agent Class

An instance of the Agent class contains the variables that describe the Agent’s AID, mailbox 
handle, local name, priority, and organization characteristic. The instance also has a pointer to a 
memory stack defined by the developer.  This stack is used for storing the agent’s context and 
variables.

Generic Behavior Class

The MAES framework provides classes that can be used by the developer to implement 
customized behavior. An instance of Generic Behavior class allows the user to implement one 
behavior for an agent. The instance contains methods that can be overwritten by the developer: 
setup(), action() and done(). Additionally, the developer can also overwrite methods related to 
Failure Detection, Identification and Recovery tasks (FDIR). The FDIR methods intend to detect 
faults and identify the origin of the fault in the shortest time possible. Therefore, reducing the 
diagnostic time and increasing the system availability [17]. With the FDIR methods, the agent 
autonomy and reliability are increased as it can detect, identify and recover from its failure 
instead of having a centralized managing authority to perform those actions. The execution flow 
of these methods is shown in figure 3.

To execute the methods shown in figure 3, the method executed() has to be called from a 
wrapper function.  If required, several behaviors can be implemented as separate subroutines in 
the wrapper function, and its execution order is determined by the developer by using patterns 
such as Finite State Machines.
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Figure 3. Generic behavior instance execution flow diagram.

Agent Organization Class
The Agent Organization class allows the developer to create organizations. Each organization 
groups the agents into one of the following topology types: Hierarchy and Team. The Agent 
Organization object contains methods such adding an agent to the organization, banning an 
agent, removing an agent from the organization, among several others.

Agent Platform Class
An instance of the Agent Platform Class contains methods to initialize the constructed agents, to 
initialize the platform and to perform the services. Additionally, this class creates the AMS agent.
The AMS agent performs actions such register/de-register an agent, suspend/resume an agent, 
kill an agent and restart an agent. The behavior of the AMS agent is shown in figure 4.

Agent Message Class
Each agent’s mailbox is created in the Agent Platform class. However, the message object 
to be exchanged during the agent’s communication is not constructed yet. Therefore, MAES 
framework provides a method for the message object creation and management through the 
Agent Message class. An instance of the Agent Message class contains the message object 
to be exchanged between two agents and the methods to manipulate the object. The message 
object contains the sender’s AID, the target’s AID, the message type and the message’s content. 
Also, there are methods to manipulate the message object such send, receive, add receivers, 
among others.
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Figure 4. AMS Agent Behavior.

MAES Framework Workflow

Figure 5 shows the workflow to be followed to use the MAES framework properly. This consist 
of three phases namely project setup, agent construction, and platform construction. In the 
setup phase, all the dependencies are configured and verified in the integrated development 
environment. For the agent construction phase both the stack and behavior parameters are 
established, then during the platform constriction phase, the boot agent service is instanced the 
application is launched by the TI-RTOS scheduler.

Figure 5. MAES framework Workflow Sequence.
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MAES Benchmark
This section describes the experiments conducted to study the real-time characteristics and the 
impact on the memory allocation, CPU’s load and power consumption of the MAES framework 
on any application. For this, four applications with a different level of complexity were used. 

The following list describes the used applications, and it is ordered from the simplest to the most 
complex level:

1. Blink LED application: Blinks two LEDs.

2. Telemetry Logger application: Logs temperature, voltage and current value and outputs 
the value in UART interface.

3. Command and Data Handling System application: Receives commands from the user 
through UART interface and performs the according action. 

4. Attitude Estimation algorithm application: Implementation of a quaternion-based Extended-
Kalman Filter (EKF) based on the work of Sabatini (2006) [18]. 

The Attitude Estimation Algorithm was implemented in MAES and JADE framework to study 
the real-time characteristic of MAES framework; the JADE library was chosen for comparison 
purposes since it is the most common known-tool for MAS-based development.

Then, to study the impact of MAES framework on the memory, CPU’s load and power 
consumption it was developed two versions for each of the applications: without MAES and with 
MAES.  Each of the benchmark tests is explained in further detail in the following sections. To 
achieve consistency with the results, all the experiments were run on the same Launchpad board 
and were implemented in the same environment with the same compiling tools.

Real-time characteristics 

This experiment compares the execution time of the EKF algorithm in MAES and in JADE. The 
execution time of the algorithm is measured each time that a new data arrives. The data is 
logged during 5 minutes at 10Hz sampling rate. The mean and variance of both framework’s 
execution time are shown in table 2.

Table 2. Mean duration and variance of the execution time

MAES Framework JADE Framework 

Min (ms) 2.564792 0.054312

Max (ms) 2.593562 64.982879

Mean (ms) 2.574432 0.182392

Variance ([ms]2) 0.000023 2.328159

JADE’s execution time varies on each call as the processor might be busy executing other 
system’s processes. On the other hand, MAES’ execution time is consistent the real-time 
operating system ensures predictability in its behavior. Figure 6 shows the probability density 
function for both frameworks.
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Figure 6. Probability density function comparison.

As seen, JADE’s execution time is widely spread while it is concentrated in MAES. Despite that 
the algorithm executes faster in JADE in average, JADE cannot guarantee that on each call the 
algorithm execution time will be consistent. On the other hand, the execution time in MAES is 
consistent as it lies on top of a real-time operating system that ensures predictable execution 
pattern behavior.

Memory Performance
The Launchpad includes 256KB Flash memory and 64KB SRAM memory. Figure 7 shows the 
memory usage for the application on both implementations.

Figure 7. (a) Flash Memory allocation (b) SRAM memory allocation

For all the applications, there is an increment in memory utilization (program memory and SRAM) 
when using a MAES implementation. The increment in the SRAM memory is due to the dynamic 
object allocation of MAES framework. An Agent Platform object requires 4,400 bytes, and an 
additional Agent object requires 36 bytes in the dynamic memory. Then, the increment in the 
Flash memory is due to the additional code size of the MAES framework as shown in table 3.
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Table 3. Code size characterization for each class.

Class Size (bytes)

Agent Platform 2,364

Agent Message 1,280

Agent Organization 1,738

Agent 236

Behavior 136

It is noteworthy that the difference between the two implementations is reduced as the 
application’s complexity increases. Therefore, the MAES framework is more suitable for the more 
complex application than the simple software implementations.
Even though that the memory usage is increased using MAES framework, the user coding effort 
is reduced as shown in table 4. 

Table 4. main() function code size per application

Application Without MAES 
(bytes)

With MAES 
(bytes) %Decrease

Blink LED 252 120 52.39

Telemetry Logger 444 236 34.48

CDHS 344 156 46.85

Attitude 
Determination 232 152 54.65

The without-MAES implementation requires additional coding effort for creating tasks and 
signaling mechanisms. On the other hand, the with-MAES implementation already contains all 
the agent routines and communication method standardized for the developer use.

CPU’s load
The RTOS Analyzer’s Load Analysis tool from Code Composer Studio is used to measure the CPU 
utilization for each application in the benchmark. For that, it captures the average CPU utilization 
for each task/agent. According to this tool, there is an increment for all the tested applications. 
As an example, table 5 shows the increment for the Attitude Determination Application.

Table 5. CPU Utilization per function for the Attitude Determination

Source Without MAES With MAES

Kalman function 2.43% 2.44%

Sensor function 0.26% 0.28%

UART function 1.60% 2.16%
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The increment of the CPU load in the MAES implementation is due to the communication method 
used in MAES. MAES not only implements the mailbox module but also, additional instructions 
are enclosed in the method send() from the Agent Message class. The additional instructions 
check the recipient validity. Table 6 shows the average duration for each communication method.

Table 6. Average time duration for different communication

Average duration (ms) Average duration (cycles)

Mailbox Post/Pend 17.412 836

MAES Post/Pend 27.375 1,314

Even though that the MAES post/pend pair is mailbox-based, this pair contains additional 
instructions to verify the recipient validity. Therefore, this increases the average number of cycles 
for the MAES communication method.

Power consumption
A set of experiments were conducted to verify the MAES’s implementation impact on the power 
consumption. For that, the power profile from each application implemented with MAES is 
compared against its non-agent implementation. The results are shown in table 7.

Table 7. Mean power consumption for each application.

Application Without MAES (mW) With MAES (mW) Difference

Blink Led 152.60 152.85 0.160%

Attitude Determination 149.21 149.57 0.245%

Telemetry Logger 134.17 134.18 0.004%

CDHD 158.95 160.20 0.785%

There is an increase in the power consumption for an application using the MAES implementation. 
The additional power consumption is the MAES framework is due to the extra CPU utilization 
required for the MAES’ communication method as reported in Section 4.3. However, the impact 
of the MAES framework on the power performance was deemed negligible as the difference is 
lower than 1%.

Conclusions and Future Work

Conclusions
This paper has shown the feasibility of a Multi-Agent Framework for Embedded Systems (MAES) 
that is a FIPA-based framework with real-time capabilities designed to be suitable for highly 
constrained embedded devices used in highly miniaturized satellites.
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The framework was developed on top of a Real-Time operating system (TI-RTOS) to guarantee 
determinism on agent’s execution. The MAES framework’s real-time characteristic was 
demonstrated in the benchmark analysis with an Attitude Determination application based 
on the Kalman filter. The experiments demonstrated that algorithm execution time in MAES 
is consistent with a variance in the order 105 s2. Based on that experiment, MAES ensures 
predictable behavior in its execution.
Results have also shown that the user coding effort is reduced as the tasks and communication 
routines are standardized and encapsulated into MAES’ class methods.  However, it comes 
at a cost as the MAES-based applications show a minimum increase in memory, CPU’s load, 
and power consumption. Furthermore, it was also shown that MAES is more suitable for more 
complex applications. 
Even though that there is an increase in the memory allocation, it is demonstrated that the 
framework is lightweight as this only requires additionally 5,826 bytes in the Flash memory. 
Furthermore, an Agent Platform object requires 4,400 bytes, and an additional Agent object 
requires 36 bytes in the SRAM memory.
In conclusion, MAES is a real-time, lightweight and scalable framework compatible with highly 
resource-constrained embedded computers.

Future Work
Despite the MAES framework was developed based on the FIPA specifications, the framework is 
not fully FIPA-compliant. Specifically, the MAES framework messages are not compliant with the 
FIPA Agent Communication Language (ACL). Thus, it presents an implementation opportunity to 
expand MAES’ functionality. The framework can be expanded to perform agents’ inter-platform 
communication when FIPA ACL is integrated.
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