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Abstract

Different countries used the growth Gompertz function at the begin-
ning of the COVID-19 pandemic to model the number of cumulative in-
fected cases since it provides reasonable results. Such a model allows
only one mode, but the pandemic evolution has exhibited a multimodal
behavior due to the different waves and variants of the COVID-19 virus.
Thus, Gompertz’s classical growth model is not well suited to describe a
long pandemic with different virus variants. This work presents general-
izations of the Gompertz model that can reproduce a multimodal behav-
ior to model the dynamics of infected cases. The models are applied to
COVID-19 data from Nuevo León, Mexico.

Keywords: COVID-19; Gompertz mixture; Poisson process; Cox process.

Resumen

Diferentes países usaron la función de crecimiento Gompertz al
principio de la pandemia por COVID-19 para modelar el número acumu-
lado de infectados dado que proporcionaba un ajuste razonable.
Este modelo permite una única moda, pero la pandemia evolucionó ex-
hibiendo un comportamiento multimodal debido a las diferentes olas y
variantes del COVID-19. Por tanto, el modelo Gompertz clásico de creci-
miento no ajusta bien para describir una pandemia larga con diferentes
variantes del virus. Este trabajo presenta generalizaciones del modelo
Gompertz donde se pueda capturar un comportamiento multimodal para
modelar la dinámica de los casos infectados. Este modelo es aplicado a
datos de COVID-19 de Nuevo León, México.

Palabras clave: COVID-19; Mezcla de Gompertz; Proceso de Poisson;
Proceso de Cox.

Mathematics Subject Classification: 62F10; 60G55.

Introduction

The Gompertz function provides a framework to model growth data thanks to
its sigmoid form. Among its multiple applications, it has been used to model
the growth of the population of different organisms, the growth of cancer tu-
mors, and the cumulative cases in epidemics. In particular, it has been used
by different groups [2] to understand the evolution of the COVID-19 pandemic
in various regions around the globe. The Gompertz growth model permits
assessing the impact of the control measures in those regions and obtaining
short-term trends predictions.
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A GOMPERTZ MIXTURE APPROACH FOR MODELING COVID-19 143

The Gompertz growth model has valuable properties for modeling epidemics
/ pandemics:

1. it is flexible enough to model regions at different pandemic stages and
various dynamics;

2. it allows to include uncertainty levels for the progress of the epidemic;

3. it provides an estimate for the total infected population, the date of maxi-
mum incidence, and the size of such maximum;

4. it allows determining confidence prediction intervals for the short term;

5. it is adaptable since it allows to include interventions that can reflect, for
example, lockdown and social distancing policies;

6. it requires less computational resources than other epidemic models.

Besides, the Gompertz model can be further adapted to be used in conjunc-
tion with a random coefficient model, which provides greater flexibility and
supports better decisions on public health. However, like most models, it has
some issues. For instance, the model does not fit all types of outliers well; be-
sides, sometimes, especially at the beginning of an epidemic/pandemic, inter-
ventions are insufficient to capture the effects of the outliers in the long term.
Another problem is that the model cannot capture a multiple mode behavior.
This aspect is especially relevant for the COVID-19 pandemic, in which we
have had multiple variants that have induced more than one mode in the
evolution of the pandemic. Such variants even can infect the vaccinated and
recovered population.

In the present work, we introduce an extension of the classical Gompertz
growth model to include multiple modes, thus capturing a more extensive
family of dynamics for the evolution of an epidemic/pandemic. The extension
is based on a distribution with a hazard function analogous to the Gompertz
growth function, which we refer to as the Gompertz distribution. The daily in-
fected cases are modeled via a Cox model with an intensity function based on the
hazard function of Gompertz mixtures. A version of the Cox model including
the effective reproduction number as a covariable is also discussed.
This covariable is introduced to accelerate the Cox model. It is worth noting
that there are other growth approaches for modeling cumulative cases which
are not based on the Gompertz framework, for instance, based on Gaussian or
logistic models (e.g. [17]). However, the Gompertz model exhibits can repro-
duce a more extensive dynamics class than those models.
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To exemplify the use of the proposed models, they are applied to the cu-
mulative COVID-19 cases in the state of Nuevo León, México. The state of
Nuevo León is selected because it has a highly industrialized economy, has a
critical trade exchange with the United States, and its COVID-19 pandemic dy-
namic includes different modes. In México, as in other countries, there have been
many approaches for modeling the evolution of the COVID-19 pandemic, such
as compartmental models (see, e.g. [9, 1, 23]). An advantage of the Gompertz
growth model over many of these models is that it requires fewer resources while
still providing a reasonable depiction of the pandemic’s evolution. In Mexico,
the pandemics dynamic has some features that resemble those found in other
countries, but at the same time, it has its particularities. In Nuevo León, the
affection of the three main COVID-19 variants- alpha, delta, and omicron- in-
duced the most critical changes in the dynamic of the pandemic, which impacted
its long-term behavior.

The article is organized as follows. Section 1 introduces the classical Gom-
pertz growth model and explains how it can be extended via hazard functions.
Section 2 describes how to fit the Gompertz-Mixture distribution via the Expec-
tation - Maximization (EM) algorithm, and the distribution is fitted to Nuevo
León’s COVID-19 data. Section 3 discusses how to model the daily infected
cases using a Cox model, with and without covariables, with intensity given
as a mixture of Gompertz hazard functions. Section 3 also includes fitting the
models to Nuevo León’s infected daily cases. Section 4 augments the discus-
sion on the results of adjusting the models to Nuevo León. Section 5 discusses
how to proceed under the presence of truncated data; such a case corresponds
to an epidemic/pandemic whose progression is still in progress. Section 6 is a
conclusions section. The article also includes three appendices. Appendix A
presents a methodology to find appropriate values to initialize the EM algorithm
employed to estimate the mixture of Gompertz distributions. Appendix B dis-
cusses some aspects of how to approximately determine the time when a new
COVID-19 variant becomes more prevalent. Appendix C briefly discusses a
GitHub repository that includes the R and Python codes used to fit the models
and produce the plots and results reported in the article.

1 A generalization of the Gompertz growth model via
hazard functions

This section reviews some fundamental elements of the Gompertz growth model.
For more details, see, for example, [26].
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A GOMPERTZ MIXTURE APPROACH FOR MODELING COVID-19 145

Definition 1 (Gompertz growth model) The Gompertz-growth function,
denoted as NG, is given by

NG(t) = αe−βe
−κt

, with t, β, κ, α > 0. (1)

Function NG is an increasing sigmoid function; thanks to this property, it
can be used to model growth phenomena. At the beginning of the COVID-19
pandemic, this model was employed to describe the evolution of the cumulative
infected cases. One important advantage of the Gompertz model is that it is
interpretable. Namely, the parameter α represents the model asymptote, while κ,
the epidemic growth coefficient, can be interpreted as the infectious coefficient.

As seen in Figure 1, the COVID-19 pandemic has more than one mode;
therefore, we need to set a model that can allow several modes. Thus, it is
necessary to extend such a model to accommodate this behavior. The present
work describes methodologies to achieve this objective.

Figure 1: The figure shows the daily active cases (black), a fitted classical Gom-
pertz model for the whole period (red), and divisions (dashed) that frame
the periods during which each of the three main COVID-19 variants dom-
inated the dynamic of the pandemic. The period spans from 2020-03-02
to 2022-04-04. In the figure, we can observe the multimodal behavior of
the active daily cases and the classical model’s insufficiency to capture the
pandemic’s whole dynamic.
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The Gompertz model can be estimated through non-linear least-squares with
restrictions, more precisely, by solving the optimization problem

(α̂, β̂, κ̂) = argmin(α,β,κ)


n∑
j=1

(Yj −NG(j))
2

 , for α, β, κ > 0,

where Y represents the number of cumulative infected cases at day j, and n is
the last day registered. In this article, we estimate the parameters using lmfit
Python’s library. For computational purposes, we assume that the epidemic /
pandemic starts the first day that there are 20 or more accumulated infected cases,
i.e. Y0 ≡ NG(0) ≥ 20.

Observe that the relative growth rate [27] of the model (1) is given by

N ′G(t)

NG(t)
= βκe−κt, with β, κ > 0, (2)

which corresponds to the hazard function of the Negative-Gompertz
distribution [10]. A possible approach to generalizing the Gompertz growth
model to capture multiple modes is modifying the hazard function to produce
a Gompertz-mixture distribution. Thus, we assume that the infection rate
(or failure rate) is an exponentially increasing function analogous to (2).
Namely, we assume that the failure rate will be

h(t) = λξeξt, with λ, ξ > 0. (3)

The hazard function (3) has been employed in [10]. A suitable reparametriza-
tion of this function is given by

h(t) = exp{γ + ξt}, with ξ > 0

(
i.e. λ =

eγ

ξ

)
, (4)

which simplifies the restrictions needed in the estimation of the parameters.
This hazard function has been considered in [14], page 171. Let F denote the
distribution with hazard function (4). We propose to extend the Gompertz growth
model as a mixture of F distributions. In this work, we refer to F as the Gom-
pertz distribution and to its mixture extension as the Gompertz-Mixture model.
We do not propose a direct generalization of the classical Gompertz growth
model since our proposal is based on a distribution with a hazard function in
the form of an increasing Gompertz function. We did it because it produced
accurate adjustments to growth curves.

In the following, when we refer to the Gompertz distribution, we mean
the distribution with hazard function (4). As we discuss later, we assume that
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A GOMPERTZ MIXTURE APPROACH FOR MODELING COVID-19 147

the infection times (failure times) follow a mixture of Gompertz distributions.
Besides, if N(t) is the number of accumulated infected at time t, we model
N(t + 1) − N(t) with a Cox model whose intensity function is given in terms
of the hazard function of the Gompertz mixture distribution of the failure times.

2 Estimating the Gompertz-Mixture distribution via the
Expectation-Maximization (EM) algorithm

This section contains two subsections. In the first subsection, we discuss how
to fit the Gompertz-Mixture distribution; in the second subsection, we fit such
distribution from Nuevo León’s COVID-19 cases.

2.1 Estimation

Consider the Gompertz-Mixture model with G components, with mixture pro-
portion

π = (π1, . . . , πG)
T , such that

G∑
i=1

πi = 1,

and parameter vector
Ψ = (θT1 , . . . , θ

T
G)

T ,

where θTi = (γi, ξi) is Gompertz’s paramter vector for i-th component.
We denote this model in the following as MGomp(G, π,Ψ) [13]. For estimating
the Gompertz-Mixture model, we need to transform the growth data (cumula-
tive cases) {Yj : j = 1, 2, . . . , n} to failure time or individual’s infected time
data {Tj : j = 1, 2, . . . ,m}, where m is the desired sample size. We assume
that the failure times Tj are independent and identically distributed random vari-
ables with distribution MGomp(G, π,Ψ) for some unknown parameters. The
independence assumption is necessary to have a finite mixture of distributions.

The previous distributional assumption can be better explained by looking
at Figure 1. We observe that Nuevo León has had three upsurges in the daily
infected curve. Thus, we can divide the COVID-19 timeline into three subperi-
ods corresponding to these three spreads. The previous assumption means that
the failure times during each subperiod follow a Gompertz-Mixture distribution,
including the case with only one mode. A similar observation is made in [2].
Later in this manuscript, we describe how approximately determine when these
subperiods start and end. It is worth noting that each of these subperiods can be
identified with a COVID-19 variant: the subperiods were mainly driven by the
alpha (α), delta (∆), and omicron (O) COVID-19 variants, respectively.

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 30(1): 141–132, Jan–Jun 2023



148 R. VÁSQUEZ — G. GONZÁLEZ — J.U. MÁRQUEZ — R. RAMOS

For transforming the growth data into failure time data, we generate a dis-
crete uniform sample on the interval [Y0, Yn]; that is, we sample m random vari-
ables I1, . . . , Im from this distribution. The k-th sampled value represents the Ik
cumulative case: through a binary search, for each k = 1, . . . ,m,
we can find j ∈ {0, 1, . . . , n− 1} such that

Yj < Ik ≤ Yj+1. (5)

Therefore, we assign the k-th individual the (j + 1)-th day of infection.
Employing this algorithm, we build a sample {Tj : j = 1, 2, . . . ,m} of
failure times.

Sampling failure times through the relationship (5) is the first step to fit a
Gompertz-Mixtures model to the cumulative cases. Given the failure times, the
next step is to get Gompertz-Mixture parameters. It is possible to estimate the
parameters through the EM algorithm as proposed in [12]. Such a methodol-
ogy consists of an iterative process that requires initializing the vector param-
eters π,Ψ and the number of components G. We discuss how to correctly
choose the initial conditions and the number of components in Appendix A.
We make available programs for estimating Gompertz-Mixture parameters and
determining the initial conditions on the GitHub repository specified in
Appendix C. Namely, the Python scripts opt_baseline.py and
initial_conditions.py contain code to estimate the Gompertz-Mixture parame-
ters and determine appropriate initial conditions. By appropriate, we mean that
they could be considered near optimal Gompertz-Mixture parameters, thus pro-
ducing a good performance in the Quasi-Newton method used for estimation.
Table 1 summarizes the estimated parameters for the Gompertz-Mixtures ob-
tained for each variant in Nuevo León.

Table 1: Gompertz-Mixture failure distribution for each strain

G π Ψ

α 4 (0.11,0.41,0.31,0.17) (-12,0.07;-9.07,0.02;-19.03,0.05;-10.64,0.02)
∆ 4 (0.24,0.29,0.43,0.04) (-10.11,0.1;-9.6,0.07;-6.6, 0.02;-16.38,0.07)
O 3 (0.44,0.41,0.15) (-6.8,0.22;-7.1,0.15;-4.99,0.04)
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A GOMPERTZ MIXTURE APPROACH FOR MODELING COVID-19 149

Remark 1 If the last wave is unfinished, the last Gompertz component of the
mixture associated with such wave is a truncated distribution. In this case, it is
necessary to estimate the right tail of such a Gompertz component.
In Section 5, we present a methodology to fit the right tail in a
Gompertz distribution. The GitHub repository mentioned in Appendix C includes
the R script tail_Gompertz.R to perform such estimation.

2.2 Estimating Gompertz-Mixture distribution for Nuevo León

The available COVID-19 data for Nuevo León spans from March 2nd, 2020, to
April 4th, 2022. The first date corresponds to the first record of a COVID-19
case in Nuevo León, while the second date corresponds to the last available date
when preparing the present manuscript.

As discussed briefly in the previous section, for practical purposes, in Nuevo
León, we recognize a time domain of influence for the most relevant COVID-
19 strains: α, ∆, and O. We refer to each subperiod by the variant that drives
it, and we consider the whole dynamic of the pandemic for the state of Nuevo
León as the concatenation of these subperiods. Besides, we use strain and
variant as synonyms.

It is worth noting that the nature of the data in each subperiod is different.
Data for the α subperiod, which corresponds to the first part of the pandemic,
only comes from hospital reports. For the ∆ subperiod, most of the employed
data also comes from hospital reports, but it also includes data from other sources
like testing. Data for the O variant still considers hospital data, but it also in-
cludes data from massive testing. Thus, these subperiods mark the evolution
of different susceptible populations. The changes in the susceptible populations
are caused, among other things, because reinfection was possible and by the
different interventions to control the growth of active cases. These interventions
were, for example, the social distancing policies and the massive vaccination
campaigns. During the ∆ andO subperiods, many reinfected individuals did not
go to a hospital but could have had a positive COVID-19 test. Besides, some
individuals had several positive tests for the same infection since a negative test
was required for some services and workplaces. Then, for practical purposes,
it is convenient to consider that different processes drive the dynamics in the
subperiod corresponding to each variant, particularly that each strain has differ-
ent Gompertz-Mixture distributions for the failure times and different inherent
counting processes.

Table 2 presents the (approximate) starting and final dates for each subpe-
riod in Nuevo León. By final date, we mean the point where a new variant
replaces the most prevalent variant; it does not imply a 100% finish of the old
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Table 2: Timeline of each strain in Nuevo León

Strain of COVID-19 Start Final
α 2020-03-02 2021-05-18
∆ 2021-05-19 2021-12-23
O 2021-12-24 continue

dominant variant but that it has been controlled. To determine the beginning
and end of a subperiod, we pair the information of the effective reproduction
number Rt (see Appendix B) and the new cases by COVID-19 variant type.
Intuitively, when Rt has been below 1 for a long time, this might indicate the
end of a variant subperiod. After a period with Rt < 1, if the effective re-
production number Rt increases above 1 and cases produced by a new variant
surpass the cases of the previous dominant, this signifies that a new subperiod
of a new variant has started. The information regarding the first cases can be
found at the site [5], where the Mexican authorities report scientific details on the
COVID-19 pandemic.

Sampling failure times through the relationship (5) is the first step to fit
a Gompertz-Mixtures model to the cumulative COVID-19 cases of Nuevo León.
We sample at each subperiod, assuming the time and the dynamic restart
at the beginning of each new strain of COVID-19. Besides, we consider that
the failure times follow a different Gompertz-Mixture distribution during
each subperiod. Figure 2 presents the results for this sampling, split
by variants. Given the failure times, the next step is to get Gompertz-Mixture pa-
rameters for each strain. Let {T1j : j = 1, 2, . . . ,m1}, {T2j : j = 1, 2, . . . ,m3},
and {T3j : j = 1, 2, . . . ,m3} the failure time data for the α, ∆, and O
subperiods, respectively. We assume that Trj ∼ MGomp(Gr, πr,Ψr),
for r = 1, 2, 3.

Figure 2 suggests that the O subperiod is in its terminal phase with
very few new infected cases. Thus, we can assume that this subperiod has
already completed its full dynamics on April 4th, 2022, the last day available
on the data. Then, we can perform the same type of analysis on the three subpe-
riods under the assumption that the three of them have already completed their
infectious cycle.

Remark 2 The methodologies explained here are based on Nuevo León’s case.
However, they can be applied to other cases, including those with more and fewer
subperiods or with an unfinished final subperiod.
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A GOMPERTZ MIXTURE APPROACH FOR MODELING COVID-19 151

(a) α strain (b) ∆ strain

(c) O strain

Figure 2: The histogram (blue) is the sample of each strain’s failure time data. The solid
line represents COVID-19’s daily cases with a three days mobile mean

3 Modeling the number of infections with the Gompertz-
Mixture model

This subsection presents two subsections. In the first subsection, we present a
Cox model for the number of failures (infections). The second subsection in-
troduces a covariable in the Cox model from the first section. For both subsec-
tions, we employ the framework of subperiods/variants discussed in Section 2.2.
In addition, in both subsections, we adjust the corresponding models to the data
from Nuevo León.

3.1 Baseline Cox model

Let hri and Sri be the hazard and survival functions, respectively, for the
i-th component of the r-th Gompertz-Mixture. If we denote by h0r and S0r
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the hazard and survival functions, respectively, for the r-th Gompertz-Mixture
(see [22]), then

S0r(t) =

Gr∑
i=1

πiSri(t), and h0r(t) =

∑Gr
i=1 πiSri(t)hri(t)

S0r(t)
.

Function h0r is the failure rate for the r variant, and we call it the baseline
failure rate. In the following sections, we obtain a baseline counting measure
with failure rate h0r to estimate the number of infected cases in a certain period.
In this way, we build a framework that allows obtaining the cumulative infected
cases as a function of time. The parameters for the previous hazard and survival
functions are estimated employing the EM algorithm as discussed in Section 2.

For t ∈ N, assume that Xrt is a random variable that counts the number of
failures in the interval (t − 1, t] during the subperiod r. In other words, if we
consider t as the number of days after the beginning of the pandemic associated
with variant r, Xrt counts the infected, in the day, at t days after that start. It is
important to recall that we restart the time in every strain.

If Xr0 is the initial number of infected at the beginning of the subperiod r,
then the cumulative number of infected cases at day t for the variant r is

Nr(t) = Xr0 +
t∑

j=1

Xrj , for t ∈ N.

A natural approach is to assume that Nr(t) is a nonhomogeneous Poisson
process with rate function m0r given by

m0r(t) ∝ Λ0r(t) =

∫ t

0
h0r(s)ds.

This kind of process is known as the Cox process or the doubly stochastic
Poisson process [20]. The process increments over disjoint intervals are, in
general, statistically dependent, and such dependency is transferred to the failure
times distribution for each strain/subperiod. The rate function m0r(t) is stochas-
tic in nature since it depends on the estimated parameters, which in general are
given by a transformation of the sample.

Under the Poisson assumption, Xrt ∼ Pois(m0r(t) − m0r(t − 1)).
We will assume that the mean of Xrt is directly proportional to the cumulative
risk and the proportion of susceptible individuals at that moment t. Let Pr be the
susceptible population at the beginning of strain/subperiod r and αkr = Pr/kr
be the carrying capacity for some constant kr ∈ R+ depending on the strain r.
More precisely, we assume that

m0r(t)−m0r(t− 1) = (αkr −Nr(t− 1)) · (Λ0r(t)− Λ0r(t− 1)) , (6)
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A GOMPERTZ MIXTURE APPROACH FOR MODELING COVID-19 153

for t ∈ N, with the restriction

m0r(0) = Xr0. (7)

Doing something similar to Fisher’s scoring method, after taking
mathematical expectation in (6) and rearranging terms, we obtain

m0r(t) + (art − 1)m0r(t− 1) = αkr · art, for t ∈ N, (8)

where art = Λ0r(t) − Λ0r(t − 1). In the previous equation, we use that
E[Nr(t− 1)] = m0r(t− 1).

Solving the first-order difference equation (8) with initial condition (7), we
obtain that

m0r(t) = αkr + (Xr0 − αkr)
t∏
i=0

(1− ari), (9)

with ar0 = 0 and ari as before.
The only unknown quantity to estimate m0r is αkr ; more precisely, we do

not know kr, the fraction of susceptible population for the r strain. If we have
observed nr days of the subperiod r, we can obtain an optimal k̂r by solving the
optimization problem

k̂r = argminkr∈R+


nr∑
j=1

[
(Xr0 − αkr)(br,j − br,j−1)− X̂rj

]2 , (10)

where br,j =
∏j
i=0(1 − ari), and X̂rt is the number of infections at day j.

We solve this optimization problem through the Levenberg-Marquardt algorithm
[18] taking the objective function as a function of kr. Thus, we obtain the optimal
fraction of susceptible population k̂r for each strain.

For each strain, we restart the susceptible population. Considering condi-
tions such as vaccination and the characteristics of each COVID-19 variant, if P
denotes the total population of the region under study, we take

Pr =


P if r = 1,

0.51P if r = 2,
P if r = 3.

In the previous relation, it can be seen that for the α and O variants, we con-
sider the whole population as susceptible. For the α variant, the value of Pr
indicates that the entire population is deemed susceptible; for the O variant, the
value of Pr means that we are assuming that reinfections were possible and that
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vaccination only protected against severe infections. We take these assumptions
as a methodological approach as we have no more information to determine a
more accurate form for the susceptible population. On the other hand, evidence
suggests that vaccination prevented developing symptoms and that reinfections
were rare for the ∆ variant. At the time, for Nuevo León, the proportion of
the vaccinated population was 0.7. If we assume an overall efficiency of 0.7
of the vaccines against the delta variant, we can estimate in 0.49P the protected
population against diagnosis. Since the available data for Nuevo León during the
delta variant consists mainly of hospital reports (i.e., we do not see those who do
not develop symptoms), 0.51P of the population can be considered susceptible.

We compare the daily infected observed data with mathematical expectation
of each Xrt, for t = 1, 2, . . . , nr, which is given by

E[Xrt] =m0r(t)−m0r(t− 1)

=(Xr0 − α
k̂r
) · (br,t − br,t−1), for t = 1, 2, . . . , nr.

(11)

Figure 3 shows the result of this contrast for each strain.

Table 3: Estimated carrying capacity and initial susceptible population of each strain
for baseline process

α ∆ O

Pr 4,653,458 2,373,263 4,635,458
kr 37.93 27.52 45.76
αkr 122,670 86,246 101,685

observed accumulated infected cases 123,385 86,671 104,258

Table 3 shows, for each strain, the carrying capacity, the initial susceptible
population, and the fraction k. It is important to note that αkr provides the
value of the asymptote in each subperiod. In addition, it presents the cumulative
number of observed infected cases at the end of each strain in the following
table. In Table 3, we can see that our carrying capacity estimation of each strain
is plausible.

If we do not have seen the pandemic subperiod entirely, we need to estimate
the Gompertz-tail to project observed data and then perform the same algorithm
as before. That is, we can calculate a plausible asymptote despite incompleted
or truncated data.
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(a) α variant (b) ∆ variant

(c) O variant

Figure 3: The black line is the daily infected cases curve smoothed through a three-day
moving average. The green line represents the mean in (11) by solving (10)
and using Gompertz-Mixture’s parameters in Table 1

3.2 Accelerated Cox model

This section describes how to incorporate a covariable in the Cox process (5)
as done in the proportional hazard models [8] to improve and accelerate the
modeling framework. The covariable considered is the effective reproduction
number Rt; the ideas presented work for other covariables. It is vital to notice
that, due to the different nature of the available data during each variant, the
dynamic of Rt differs during each subperiod. Therefore, we accelerate the Cox
process for each subperiod independently of the others.

We refer to the Cox model (6) as the baseline model. The approach is
to accelerate the cumulative hazard function with a function of the covariable.
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The covariable functional is given by

φr(Rtr) = exp(βr(Rtr −Rtr)),

where Rtr is the effective reproduction number on the respective subperiod, Rtr
is the mean of Rtr, and βr is a parameter to be estimated that accelerates the
baseline Cox model (6).

Let hr be the accelerated hazard function. We use the relative risk or Cox
model [8] approach for accelerating the baseline model (6); that is, we assume

hr(t) = φr(Rtr)h0r(t) = exp(βr(Rtr −Rtr))h0r(t), for r = 1, 2.

Table 4 contains the regression coefficient for the α and ∆ variants. We omit
the O variant because the data for Rt is only available from February 3rd, 2020,
to January 23rd, 2022. The description and analysis of the effective reproduction
number Rt are available in [4, 16]1. Figure 4 depicts the behavior of the mean
function of the baseline and the accelerated Cox process against observed daily
data. These plots are built by simulating Poisson variables. Contrary to Figure
3, where the baseline curves are created employing the expression for the mean
value, the curves in Figure 4 are built from simulations.

Table 4: Coefficients of relative risk model

α ∆

βr -0.047 -0.014

Figure 4 shows the fit of the growth models to the cumulative cases for each
subperiod/variant. We can see that the Cox Gompertz-Mixture model exhibits
good fits for the three variants.

The accelerated version of the mean function can be obtained by solving
the equation

mr(t) = α′kr + (Xr0 − α′kr)
t∏
i=0

(1− a′ri), for t ∈ N,

where Λr(t) =
∫ t
0 hr(s)ds, a

′
ri = Λr(i) − Λr(i − 1), for i = 1, 2, . . . and

a′r0 = 0. The last equation is analogous to the difference equation in (6).
As done with the Cox baseline model, we can estimate the carrying capacities
of the accelerated process by solving the analogous version of the optimization
problem in (10).
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(a) α variant (b) α variant

(c) ∆ variant (d) ∆ variant

(e) O variant (f) O variant

Figure 4: The figure presents the Gompertz-Mixture model (baseline and accelerated
Cox model) fitted for each subperiod. On the left, we have the observed daily
cases and the fitted model derivative; on the right, we have the cumulative
cases and their corresponding fitting.
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Table 5 presents the Poisson deviances of both Cox models estimated: base-
line and accelerated. We have similar performances between the baseline and the
accelerated models. Besides, we can see that the Poisson process model does not
explain enough variability in data. Table 6 presents, for each subperiod/variant,
the carrying capacity, the initial susceptible population, and the fraction k for
the accelerated model; it is analogous to Table 3. We can see that both ta-
bles show very similar values providing more evidence that both models show
similar performances. Still, as shown in Figure 3, the models can at least de-
scribe the expected behavior of the process.

Table 5: Mean Poisson deviance for each model

α ∆ O

baseline 23.47 28.6 107.66
accelerated 22.9 30.44

Table 6: Estimated carrying capacity and initial susceptible population of each strain
for accelerated process

α ∆

Pr 4,653,458 2,373,263
kr 38.04 27.6
αkr 122,346 85,979

observed accumulated infected cases 123,385 86,671

The previous results indicate no significant difference between the base-
line and the accelerated Cox models. However, the accelerated could likely
outperform the baseline model if additional information and suitable covari-
ables are employed; in this work, we use the effective reproduction number
since it is the only available information we have. We include the accelerated
model for completeness to include an approach extensively used in the context
of a Gompertz model [12].

1The data needs to be required from the Mexican authorities
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4 Concatenating the mixed models

This section further discusses the results of applying the Gompertz-Mixture
model to Nuevo León’s cumulative COVID-19 cases data.

Figure 5 shows the result of concatenating the models for the three subpe-
riods. We cannot see discrepancies due to the scale resolution. However, in
Figures 3 and 4, we can see that the models for the α and ∆ subperiods exhibit
better performance than for the O case. This visual confirms what the deviances
reported in Table 5 indicate. It is important to remember that the asymptotes are
estimated for each subperiod independently since it depends on the susceptible
population and the database nature.

(a) Daily infected curve (b) Growth curve

Figure 5: Density and growth model for the concatenated COVID-19 dynamic in Nuevo
León.

With complete data, i.e., a curve that decreases enough at the end of each
subperiod, it is plausible to transform growth data into failure times, then assume
a Gompertz-Mixture model and see the whole COVID-19 dynamic as a mixture
of mixtures. For incomplete data, Section 5 describes how to complete the tail.
In that section, we can see in an example that it is possible to build an asymptote
through the right tail estimation.

The Gompertz-Mixture model allows for comparing each subperiod/variant
through the value of their parameters, such as growth coefficients. For instance,
the O subperiod has the most significant growth coefficient, which explains that
the number of cumulative infected cases during this subperiod is similar to those
reported on the α subperiod but in a shorter period. In addition, we can see at
the beginning a more significant growth in the ∆ variant with a 0.1 growth co-
efficient compared to 0.0686 for the α growth coefficient. In general, we can
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see more significant growth coefficients in the ∆ strain than in the α strain;
analogously, we see larger coefficients for the O variant than for the ∆ variant.
This phenomenon, perhaps, responds to the increasing information sources dur-
ing the COVID-19 timeline: from only hospital reports during the α subperiod
to massive testing information during the O variant.

Focusing on one subperiod, we can perform a clustering analysis for its
timeline and see how the growth coefficients of each of its Gompertz compo-
nents change in time. For example, for the α subperiod, we have that the best
Gompertz-Mixture model has four components with corresponding growth co-
efficients (0.068, 0.023, 0.05, 0.018). Thus, we can see that the α subperiod
exhibited its most significant growth at its beginning.

We have assumed that the subperiods are technically complete with what we
have done until this point. This assumption is used because it is the condition of
the data used in the example. The following section discusses how to proceed
when we consider a subperiod that is still in progress, that is, if the curve of daily
infected cases is right-censored.

5 Gompertz tail estimation

This section describes how to estimate the right tail of a Gompertz distribution.
The method is based on the Peaks-Over-Threshold method [3]. Thus, we can
complete the observed density of the last Gompertz component of the failure
times. The procedure can also be employed to complete the current subperiod of
the daily infected cases (that is, to estimate the right tail of the subperiod) under
the assumption that the conditions remain unchanged. By the tail, we mean the
last right part of the distribution.

In the following, we include some theoretical results necessary to explain
the methodology to present a complete description. These results are
taken from [21].

Definition 2 (Von Mises distribution) Let F be a distribution function with
right extreme ωF ≤ ∞. Function F is a Von Mises distribution if there exists
z < ωF such that

F (x) = c exp

{
−
∫ x

z

dt

a(t)

}
, z < x < ωF ,

where c > 0 and a is an absolute continuous positive function with density a′

satisfying limx→ωF a
′(x) = 0.
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Definition 3 (Domain of attraction) We say F is in the domain of attraction
of a distribution G, written F ∈ D(G), if there exist sequences an > 0, bn,
n ≥ 1, such that

Fn(anx+ bn) → G(x) weakly.

Theorem 1 Let F be a Von Mises distribution with auxiliary function a and let
F
← denote the generalized inverse function ofF . Then, F belongs to the Gumbel

domain of attraction D(ϕG), and the normalized constants for the maximum are
bn = F

←
(1/n) and an = a(bn).

We need the following result to be able to apply the Peaks-Over-Threshold
method.

Theorem 2 If F is the Gompertz distribution function, then F ∈ D(ϕG).

Proof. Recall that the hazard function associated with the Gompertz distribution
is given by h(t) = exp(λ + ξt). Taking a(ξ) = [h(ξ)]−1 = exp(−λ − ξξ), we
have that

F (t) = exp

(
−
∫ t

0

dξ

a(ξ)

)
, t > 0.

Besides, since ξ > 0,
lim
ξ→∞

a′(ξ) = 0. (12)

Therefore, the Gompertz distribution is a Von Mises distribution; besides, thanks
to Theorem 2, it belongs to the Gumbel domain of attraction.

Since the Gompertz distribution belongs to the Gumbel domain, we can ap-
ply the following result [19].

Theorem 3 (Pickands-Balkema-de Haan) Let F be a distribution function.
Then, F belongs to a domain of attraction D(ϕ), i.e. F ∈ D(ϕ) where ϕ is
a extreme value distribution, if and only if

lim
u→ωF

sup
0<x<ωF−u

∣∣∣∣F (x+ u)

F (u)
− Pψ,a(u)(x)

∣∣∣∣ = 0,

for some measurable and positive function a(u) and where Pψ,a(u) represents a
Generalized-Pareto tail with shape parameter ψ and scale a(u).

The previous result permits using the Peaks-Over-Threshold method to esti-
mate the unobserved tail of a Gompertz distribution. It is practical, among other
things, because it is possible to complete the right tail of truncated data with this
procedure.
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Thus, to estimate the right tail, we should choose a threshold u large enough
to obtain a good approximation

F (x+ u) ≈ F (u)Pψ,a(u)(x). (13)

If the sample size allows it, we can select u such that the proportion of failure
time data greater than u is roughly 5%.

Before applying the method, it is recommended to smooth the failure time
data; Kernel Density Estimation [7] can be used for such a task. Then, we
recommend resampling from the estimated density and then applying the de-
scribed methodology for the tail estimation to this new sample [7, 11].

Using the package ismev, we implemented the methodology described in
this section in R. The corresponding code is in the GitHub repository mentioned
in Appendix C under the title tail_Gompertz.R.

In the following, we present an application of the method described above
to estimate the right tail of the cumulative infected cases. Let’s assume we only
observed the pandemic until February 1st, 2022; Figure 6 shows this graphically.

Figure 6: Right truncated data

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 30(1): 141–132, Jan–Jun 2023



A GOMPERTZ MIXTURE APPROACH FOR MODELING COVID-19 163

As recommended, we start by smoothing the failure data; then, we estimate
the right tail by the described procedure. The result is shown graphically in
Figure 7.

Figure 7: Gompertz tail estimation

We estimate the right tail of the daily cumulative infected cases by rescaling
the tail estimation (13). More precisely, we employ the approximation

D̂t = Yu · F̂ (u) · pψ̂,â(u)(t− u),

where D̂t is the estimation of the daily cumulative cases at day t; Yu is the
cumulative infected cases at day u; F̂ (u) is an empiric estimation of the sus-
ceptible population proportion at day u; and, p

Ψ̂,â(u)
is a generalized-Pareto

density with the estimated parameters. The estimator F̂ (u) must be taken
as empirical values according to the available information. For instance, it is
possible to employ the susceptible population of another subperiod/variant at a
similar time if the dynamic of both subperiods is similar or use the information
of what has happened in other regions if the dynamics are similar again. Using
this empirical value, it is possible to reestimate it using the Levenberg-Marquardt
algorithm from the initial susceptible population.
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Estimating the right tail of the cumulative cases is important for the present
modeling framework. In particular, it allows to estimate a plausible asymptote
for the cumulative cases and do the same type of analysis that the classical Gom-
pertz model allows despite truncated data.

In the case of unobserved peak (when we are observing the subperiod begin-
ning), we suggest getting the Cox process’ rate function m analytically as (9),
i.e., we obtain

m(t) = αk + (X0 − αk)

t∏
i=0

(1− ai),

where ai is as before considering the cumulative hazard function of a Gompertz
distribution. We fix αk to a reasonable value which can come from considering
a similar susceptible population of another subperiod/variant or additional infor-
mation. Then, with a closed form of the rate function m, we obtain preliminary
Gompertz parameters solving the following optimization problem

(γ̂, ξ̂) = argmin(γ,ξ)

{
r∑
i=1

(m(i)− Ŷi)
2

}
, (14)

and the solution can be found with a similar procedure as the used in the opti-
mization problem in (10). These parameters could be used to provide a projec-
tion of the cumulative infected cases. This last part is not implemented
in the repository.

6 Conclusions

This work proposes an interpretable parametric model to adequate the classi-
cal Gompertz growth model for epidemic modeling. The model allows multiple
modes and heterogeneity. In addition, the model accommodates a framework
that works even when the subperiods are still in progress which allows for build-
ing an asymptote to predict the epidemic. The particularities of the COVID-19
pandemic caused the epidemic curve for the infected cases to exhibit a multi-
modal structure. The primary motivation to develop the model discussed in this
work was to have a growth model able to capture this dynamic.

The model treats the COVID-19 dynamic as the concatenation of three sub-
periods corresponding to the COVID-19 strain’s dominance. That is assumed
because each epidemic subperiod has its particularities. This has been observed
for different regions around the globe; Mexico is not an exception. For instance,
the starting dates for the pandemic and the applied public policies have varied,

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 30(1): 141–132, Jan–Jun 2023



A GOMPERTZ MIXTURE APPROACH FOR MODELING COVID-19 165

causing different types of dynamics in the reported infected cases. During a sig-
nificant part of the pandemic in Mexico, the main concern was the management
of the health infrastructure available to attend to the most critical infected indi-
viduals. However, currently, the most critical changes in the dynamic have been
induced by the different variants of the virus.

The main contribution of this work is to propose a model that allows growth
models with a multimodal structure throughout a mixture of Gompertz distribu-
tions. The model initially was constructed assuming that all, or almost all, the
infections have already been seen. The model is then extended to the case where
the epidemic is still in process, i.e., when the process is censored to the right
(end of Section 5).

The Accelerated Cox Model did not significantly differ from the Baseline
Cox Model. We could search for other covariables for improving the
Accelerated Cox Model adjustment, this will be addressed in a future work.
For incomplete subperiods, employing a good projection into the future forRt as
a covariable, the accelerated Cox model could provide more assertive informa-
tion on the asymptote for the Gompertz model. We are thinking of this as further
work. In fact, we already have some methodologies for projecting Rt [9].

For a more accurate depiction of reality, it is necessary to have information
regarding all cases. A possible way to do this is through models that permit
estimating the size of the undetected cases [6, 9]. In the present article, we
studied a subset of an infected population since there were individuals infected
with COVID-19 that never went to the hospital or did a COVID-19 test.

Finally, it is relevant to note that the proposed models can be used to model
other regions and incomplete subperiods, provided there is enough data.
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Appendix A Initial conditions

This appendix discusses how to determine initial conditions for the Gompertz-
Mixture model estimation. The proposed method is heuristic.

The first requirement for applying the EM Algorithm to the
Gompertz-Mixture model is to determine the number of components. As in clus-
tering analysis under a mixture model, we assume that each Gompertz compo-
nent corresponds to one of several waves/peaks observed. The Gaussian Mixture
Model (GMM) can relatively well capture the number of waves in each strain,
even for underlying Gompertz distributions.

To estimate the number of components, we estimate a GMM model with 1,
2, 3, and 4 components and select the one with the lowest Bayesian information
criterion (BIC). The number of components of the selected GMM model corre-
sponds to the number of components of the Gompertz-Mixture model.
The next step is to initialize the vectors πr and Ψr. We select π(0)r as the mixture
proportion of the GMM model with the lowest BIC.

Determining Ψ
(0)
r is a little bit harder. For each subperiod/variant r, let

Gr be the number of components that comprise the corresponding subperiod.
We employ the selected GMM model for each subperiod to cluster the fail-
ure times data {Trj : j = 1, 2, . . . ,mr}. For the r-th subperiod, let Dir,
i = 1, 2, . . . , Gr, denote each corresponding cluster. We assume that the hazard
function for each cluster satisfies

hri(tj) = exp(γri + ξritj), for tj ∈ Dir.

Employing the Nelson-Aalen estimator [25], we obtain a nonparametric esti-
mator ĥri for the hazard function hri at each cluster. Then, we obtain initial
parameters γ(0)ri and ξ(0)ri by solving the regression

log ĥri(tj) = γri + ξritj + ε, for tj ∈ Dir.

These values can be used to initialize EM Algorithm [14] used to estimate the
Gompertz-Mixture parameters as presented in Section 2.2.

The GitHub repository mentioned in Appendix C includes the Python routine
estimate_initial_parameters_risk, located at module initial_conditions.py,
that implements the heuristic methodology described above.

Remark 3 Some elements in the heuristic procedure described in this appendix
can be adapted if necessary. For instance, a higher number of components for
the GMM model or a different nonparametric method to estimate the hazard
function can be considered. However, we report those with the best performance
in our tests for many different regions.
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Appendix B Rt and COVID-19’s variants

After a severe infectious period in Mexico in the summer of 2020, the epidemic
curve of infected cases followed a slow increasing behavior until the end of 2020.
This slow-growing period is likely a consequence of the public policies imple-
mented to reduce virus transmission to avoid the saturation of health facilities.
In February 2021, after Christmas, the most infectious period associated with the
alpha variant was registered. This is a complete description of the dynamic of
the alpha variant in Mexico.

In Mexico, during the alpha subperiod, most of the data for infected cases
came from hospital reports, principally from public hospitals. More informa-
tion was available from public testing sites and private laboratories for the delta
and omicron variants. This increment in the available data resulted from the fact
that individuals infected with these variants generally required fewer hospitaliza-
tions, although not few. These characteristics apply to Nuevo León, the selected
region to exemplify the proposed models, primarily because it has an extensive
health services infrastructure, including hospitals and laboratories. The type of
information used to compose the data is fundamental to understanding the results
provided for the models presented. In particular, it means that the results reflect
just the dynamic of the observed cases, leaving out the undetected cases. For a
more accurate depiction of reality, it is necessary to have information regarding
all cases.

For the case of Nuevo León, the observed data cover until the beginning of
April, when all the variants/subperiods are in remission. This means that we
did not have to estimate the right tail, and predicting the asymptotes was direct.
However, as mentioned earlier, the present work also discusses a way to estimate
the right tail and compute an asymptote.

In this Appendix, we discussed some aspects of determining the start and
final of the subperiods mentioned in Section 2. As we mentioned, this is partly
based on the effective reproduction number Rt. The quantity Rt describes the
infection rate of an epidemic during the time. It is worth recalling that for a
value Rt < 1, an epidemic/pandemic is controlled, while for Rt > 1, the epi-
demic/pandemic is in a growth phase. Figure 8 shows Rt for the COVID-19
pandemic in Nuevo León, where we can observe that their values fluctuate be-
tween above and below 1.

The Rt curve is obtained with a methodology similar to the one shown in
[24] but taking 12 days as the epidemiologic week and different variances for
each region studied in Mexico [9]. The Rt calculation uses an initial value
R0 based on epidemical properties, for instance, the infectious disease period.
Thus, the proposed start date in Table 2 is the moment when, based on a newR0,
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Figure 8: The figure presents the Rt curve (red/green) from March 2020 to June 2022.
The curve was generated using only the information up to March 2020.
After this date, the values for the curve were produced by employing a pro-
jection (see [9]) with the available information. In the figure, we can also
see how the susceptible populations evolve (yellow) for each subperiod under
consideration described before.

we obtain a new Rt that attempts to capture the epidemical features
at that moment. We could see it as a restart of Rt computation. The final of
a subperiod and the beginning of a new one is, for practical purposes, deter-
mined when Rt has been below 1 for a long time, and then it increases above,
and the cases of a new variant surpass the cases of the previous dominant strain.
The beginning of a new subperiod match approximately with the new variants’
first cases; the prevalence and knowledge about the new variant are used, partic-
ularly in determining the values of R0. The final date of a subperiod is one
day less than the start date because we are treating the global dynamic as a
concatenation of the subperiods’ dynamic. For better visualization, Figure 9
shows the Rt curve disaggregated by subperiods. Notice the difference in
scales for each subperiod.
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It is worthy to point out that the influence of each strain does not disappear
totally, but we see how its dominance decreased through Rt, and because of Rt
nature, we can conclude that strain enters a controlled phase. When we include
knowledge of a new strain in Rt computation, we take the strain that shows
dominance in the current epidemic dynamics.

(a) Rt behavior for α subperiod (b) Rt behavior for ∆ subperiod

(c) Rt behavior for O subperiod

Figure 9: The figure presents the curve of the effective reproduction number Rt

(green/red) for each strain. Notice that the scales are different; the O had
an explosive increment of cases, while during the α subperiod, the increment
was somehow controlled. As explained before, this is caused because the ob-
served cases are not the same for each subperiod. It is important to recall that
the O subperiod includes a projection of Rt, as we described in Figure 8.

Appendix C Software and data

We prepared a GitHub repository with Python and R codes to repro-
duce the methodologies discussed in this work. Such a repository is lo-

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 30(1): 141–132, Jan–Jun 2023



170 R. VÁSQUEZ — G. GONZÁLEZ — J.U. MÁRQUEZ — R. RAMOS

cated at https://github.com/robervz22/code-A-Gompertz-mixture-approach-for-
modeling-the-evolution-of-the-COVID-19-dynamics, and the code also pro-
duces the figures included in this article.

On the other hand, the daily and accumulated infected data is open-access
and available at the official site in [15]. A copy of this data is in the repository.
The data of the effective reproduction number Rt need special permissions, and
therefore we omit it; however, the Jupyter Notebook GMM.ipynb indicates how
that data can be used for the Gompertz-Mixture model.
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