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Abstract

We apply different information quantifiers to the study of COVID-19
time series. First, we analyze how the fact of smoothing the curves alters
the informational content of the series, by applying the permutation and
wavelet entropies to the series of daily new cases using a sliding-window
method. In addition, to study how coupled the curves associated with daily
new cases of infections and deaths are, we compute the wavelet coherence.
Our results show how information quantifiers can be used to analyze the
unpredictable behavior of this pandemic in the short and medium terms.

Keywords: information theory; permutation entropy; statistical complexity;
Bandt-Pompe methodology; wavelet transform.

Resumen

Aplicamos diferentes cuantificadores de información al estudio de se-
ries temporales de COVID-19. En primer lugar, analizamos cómo el hecho
de suavizar las curvas altera el contenido de información de la serie, apli-
cando la entropía de permutaciones y la entropía wavelet a la serie de casos
diarios nuevos mediante un método de ventana móvil. Además, para estu-
diar qué tan acopladas están las curvas asociadas con los nuevos casos dia-
rios de infecciones y muertes, calculamos la coherencia wavelet. Nuestros
resultados muestran cómo se pueden utilizar cuantificadores de informa-
ción para analizar el comportamiento impredecible de esta pandemia en el
corto y mediano plazo.

Palabras clave: teoría de la información; entropía de permutaciones;
complejidad estadística; metodología de Bandt-Pompe; transformada wavelet.

Mathematics Subject Classification: 92-10, 92-11.

1 Introduction

Information quantifiers have a widespread use in many areas of research [12, 29,
10, 1, 30, 5]. In particular, they have been useful to characterize the informa-
tional content of time series of complex systems [14, 21, 13, 28]. In this work,
we analyze the time series associated with the COVID-19 pandemic by appeal-
ing to different information measures, in order to gain a better understanding
of its dynamics. For related studies on the subject, see [11, 15, 7, 8].

In general, the different indicators associated with the pandemic (such as the
records of daily new cases and daily deaths) show a quite unpredictable behav-
ior. Many works have focused in trying to model their dynamics, obtaining a
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reasonable degree of accuracy. However, predicting the behavior of the time se-
ries remains challenging in several respects and, in particular, it is difficult to un-
derstand the fluctuations that occur in the short and medium terms. It is relevant
to properly understand these fluctuations, since they are often used as indicators
of the evolution of the pandemic in discussions about public
health policies. As we show below, the information quantifiers give us an in-
teresting characterization of those fluctuations.

In a previous work, we used the wavelet and permutation entropies to study
the COVID-19 data series [11]. Due to the high entropy obtained, we concluded
that the series have low informational content. The meaning of the previous
assertion is that its behavior is highly unpredictable. Here, we extend the pre-
vious study and look more closely to other aspects of the time series.

We analyze how the entropic quantifiers depend on the smoothness of
the curve. Short-term fluctuations in the time series are expected to
increase entropy. Thus, if a preprocessing of the available data is applied in
such a way that it results in a smoothed time series (as for example, by applying
a moving average), thus decreasing the fluctuations, we expect the entropy to
decrease as well. We show how this phenomenon takes place by appealing to a
sliding-window method [10]. The sliding-window analysis is important for our
purpose, because it allows to study the evolution in time of the information con-
tent of a time series. In this way, it is possible to characterize different phases in
the time evolution of a variable. First, we explain how to use the entropic quan-
tifiers to extract maximal information about the medium and long-term behavior
of the time series. Next, we notice that, even if the entropy decreases, the mean
values obtained are still high. Such a result can be interpreted as follows: the
high degree of unpredictability is intrinsic to the dynamics of the pandemic.

Finally, we consider the problem of characterizing the interdependence of
different time series using information quantifiers. We do this by analyzing the
wavelet coherence between the time series of daily new cases and daily deaths
in a given country. As the wavelet coherence gives information in time and fre-
quency by using finite time windows, it is suitable for analyzing nonstationary
time series. Our results suggest that wavelet coherence is a relevant tool to quan-
tify changes in the dynamics of the daily new cases time series. In particular,
it seems that, in some cases, it could be used for quantitatively assessing the
effect of health policies, such as vaccination campaigns. The paper is organized
as follows. In Section 2, we briefly review the basic aspects of the informa-
tion quantifiers that will be used in this work. In Section 3, we describe the
sliding-window method to study the variation in time of the permutation and
wavelet entropies. The calculations for a test signal are presented in 3.1.
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In 3.2 we analyze different countries and we show how their mean values change
when the curves are smoothed. In Section 4, we compute for two cases the wave-
let coherence between daily new cases and daily deaths curves, and we show how
they decouple after the vaccination campaigns. Finally, in Section 5 we draw
some conclusions.

Figure 1: United Kingdom. Daily cases l = 1 (left), and smoothed curve using moving
average l = 7 (right).

2 Entropic quantifiers

In this section, we review some basic aspects of the information quantifiers used
in this work. In what follows, we restrict the presentation to the discrete case.

2.1 Permutation entropy

The permutation entropy was introduced in reference [2] (see also references [23,
24, 25] for more details; see [10, 16] for particular examples
of applications). Given a time series {xi}Ti=1, an associated probability distri-
bution is built as follows. First, we choose two parameters: the embedding di-
mension D ∈ N and the time delay τ ∈ N. Next, for each time k = 1, . . . ,T −
(D − 1)τ , we consider the sequence Ik = (xk, xk+τ , . . . , xk+(D−1)τ ). To each
Ik it is assigned a permutation pattern, i.e. a permutation of the set {1, . . . , D},
according to the following criterion:

Ik → πl = (m0,m1, . . . ,mD−1), 1 ≤ l ≤ D! , (1)

with m0,m1, . . . ,mD−1 such that xk+m0τ < xk+m1τ < . . . < xk+mD−1τ

(see [26]). This means that a permutation pattern πl is assigned to each
sequence Ik. This pattern keeps track of the permutations that result from re-
ordering it from lowest to highest. Thus, a collection of permutation patterns
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is associated with the set {Ik}k=1,T−(D−1)τ . From the collection of permu-
tation patterns, we can obtain a normalized histogram which gives place to a
probability distribution. The frequency of a given pattern π is given by

p(π) =
#{k | k ≤ T −D , Ik has typeπ}

T −D + 1
. (2)

In this way, a probability vector is assigned to the time series, out of which
it is possible to define the permutation entropy as

SP (p) = − 1

ln(D!)

∑
π

p(π) ln(p(π)), (3)

the permutation entropy can be easily implemented in Python or MATLAB codes
(here we use a variant of the MATLAB code that can be found in [19]; see also
[14, 21]). How equation 2 is applied to obtain the probability distribution is
illustrated in the following simple example.
Example. For D = 3, D! = 6 and T = 256. The permutations are

(321), (312), (231), (213), (132), (123),

(10, 8, 9) → πl = (3, 1, 2) type 2,

(7, 3, 2) → πl = (3, 2, 1) type 1,

(5, 9, 6) → πl = (1, 3, 2) type 5.

Given a time series {xi}Ti=1, of length T = 256 an associated probability
distribution is built using equation 2 above:

p(1) =
#{k | k ≤ T −D , Ik has type 1}

T −D + 1
,

where T − D + 1 = 256 − 3 + 1 = 254 in this case. In the same manner,
p(2), p(3), . . . , p(6) can be calculated, corresponding to types 2, . . . , 6.

As it is discussed in [20], is important to remark that there are certain
ambiguities related to the permutation entropy. We refer the reader to [2, 23,
24, 25] for further details on this quantifier. Here, we just stress the following
points, which are relevant for our work:

• The permutation entropy can be considered as a measure of how
unpredictable the behavior of a time series is. As such, it can be regarded
as a measure of disorder of the time series.
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• If the time series is strictly increasing (or strictly decreasing), then all its
permutation patterns will be stored in a single symbolic pattern. Thus, the
associated probability distribution will be maximally peaked, and conse-
quently, its entropy will be the lowest. This is intuitively interpreted as
follows: if a time series is monotonous, then its behavior is totally pre-
dictable and, as such, it has a low entropy. A similar consideration ap-
plies when the time series has long intervals with a definite monotonicity:
the entropy will be close to the lowest value, since the contribution to the
total entropy of those segments will be low.

• From the above point, it follows that the main contribution to the entropy
comes from the segments of the time series for which the fluctuations
are high. In this way, this quantifier allows to capture the intrinsic un-
predictability of a given time series.

Figure 2: A test signal s(t) and its Fourier spectrum.

• If the time series is constant in one of the intervals Ik (i.e., xk = xk+1 =
. . . = xk+D−1), then a convention must be taken in order to assign a per-
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Figure 3: Discrete wavelet decomposition of the test signal.

mutation pattern to it. In this work, we adopt the convention
xk+i = xk+i+1 =⇒ xk+i < xk+i+1. Thus, with this convention, if a
time series is constant, its distribution will be maximally peaked, and con-
sequently its entropy will be zero. This is convenient for us, given that,
in the context of the COVID-19 pandemic, it is reasonable to interpret a
constant sequence of data as a highly predictable time series. With our
convention, if a country displays zero deaths during large periods of time,
the permutation entropy will be low.

2.2 Wavelet entropy

Given a time series, the wavelet analysis performs a transformation that is
sensitive to time and frequency. First, one fixes an orthogonal discrete wavelet
basis [3, 17, 9, 4, 18]. By performing an adequate transformation, the time series
is written as a linear combination in that basis. Its coefficients provide infor-
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Figure 4: A test signal s(t) and a window of length lw = 256.

Figure 5: Permutation entropy of the window SI(p) = 0.49 (left). Permutation entropy
of the window adding white noise SI(p) = 0.96 (right).

mation about the frequency spectrum associated with a localized time window.
When normalized, a probability vector naturally arises, and its Shannon entropy
is called the wavelet entropy. Given a signal X(t) (assumed to be discrete),
the wavelet expansion reads

X(t) =
∑
j,k

Cj(k)ψj,k(t), (4)

where {ψj,k(t), j, k ∈ Z} is the wavelet family generated by translations and
dilations of a given “mother wavelet", ψ(t), which captures the detailed, high-
frequency parts of the signal at each scale. Indices j and k correspond, re-
spectively, to a dyadic frequency-decomposition and to time-translations [4].
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Figure 6: Wavelet entropy of the window SW (I) = 0.74 (left). Wavelet entropy of the
window adding white noise SW (I) = 0.75 (right).

In this work we employ the orthogonal Daubechies-10 function (db10) as the
mother wavelet.

Figure 7: Permutation entropy with D = 4, using sliding window and moving average
with l = 1 (left) and l = 7 (right) for United Kingdom.

A wavelet energy can be defined in similar way as in the Fourier theory.
At each resolution level j, the wavelet energy of the signal is given by
Ej =

∑
k |Cj(k)|2. The wavelet coefficients correspond to the inner product

between the signal and scaled and shifted versions of the mother wavelet, i.e.
they are given by Cj(k) = ⟨X,ψj,k⟩ =

∑T
i=1 xi ψ

∗
j,k(ti) for the discrete time
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Figure 8: Wavelet entropy, using sliding window and moving average with l = 1 (left )
and l = 7 (right) for United Kingdom.

series {xi = X(ti)}Ti=1.
The total wavelet energy is obtained as

Etot =
∑
j

Ej =
∑
j,k

|Cj(k)|2 . (5)

The relative wavelet energies for each resolution level,

pj =
Ej

Etot
, (6)

constitute a set of normalized values which define the probability distribution
of the wavelet energy in the time series. Clearly,

∑
j pj = 1. The distribution

{pj} can be considered as a time-scale density that constitutes a suitable tool
for detecting and characterizing specific phenomena in both time and frequency
planes.

2.3 Wavelet coherence

The continuous wavelet transform can be used to analyze time series that
contain nonstationary power at many different frequencies [6]. The continuous
wavelet transform of a discrete sequence xn is defined as the convolution of xn
(with n = 1, . . . , N and uniform time intervals of size δt) with a scaled and
translated version of a wavelet function ψ:

WX(s, n) =

N−1∑
n′=0

xn′ψ(∗)
[
(n′ − n)δt

s

]
, (7)

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 30(1): 1–23, Ene–Jun 2023



INFORMATION QUANTIFIERS AND UNPREDICTABILITY IN THE . . . 11

Figure 9: South America. Moving average (l=7). Daily Infected Cases (up). Sliding-
window method: permutation entropy (down left) and wavelet entropy
(down right).

where (*) indicates the complex conjugate. To be “admissible” as a wave-
let, the function ψ must have zero mean and be localized in both time and
frequency space. An example is the Morlet wavelet [27]. By varying the wave-
let scale s and translating along the localized time index n, one can construct a
picture showing both the amplitude of any features versus the scale and how this
amplitude varies with time.
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Wavelet analysis is also a useful tool for analyzing two time series together.
The cross wavelet transform and wavelet coherence are presented for examining
relationships in time–frequency space between two time series [27].

Given two time series xt and yt (with t = 1, . . . , N and uniform time
intervals of size δt), the so-called cross wavelet transform of their respective
(continuous) wavelet transforms WXand W Y is given by

WXY =WX(W Y )∗, (8)

and the cross wavelet power XWT is defined as |WXY |. The phase of the
complex number WXY gives information about the phase relation between X
and Y in the time-frequency space.

Another important measure –that we use in this work– is the wavelet
coherence, which is given by

R2(s, n) =
|S(s−1WXY (s, n))|2

S(s−1|WX(s, n)|2)S(s−1|W Y (s, n)|2)
, (9)

where S is a smoothing operator. The wavelet coherence provides a powerful
tool for dealing with nonstationary time series.

3 Sliding-window analysis

As shown in a previous work [11], the informational content of the time series of
the COVID-19 pandemic is low, in the following sense: when analyzed from the
perspective of entropic quantifiers, the values obtained are high. One question
naturally arises: why is the entropy so high? Under the light of the remarks of
Section 2, it should be clear that the short and medium-term fluctuations in the
random variables are responsible for the high values of the entropic quantifiers.

What is the nature of these short and medium-term fluctuations in the varia-
bles associated to the pandemic? It is clear that the methodology of data acquisi-
tion has a dynamics of its own. As an example, the report of the daily new cases
will depend not only in the number of tests performed, but also in the machinery
of data acquisition and publication by different agencies (such as governments).
Also, the short-term behavior clearly depends on the eventual realization of so-
cial events and activities. Taken as a whole, these causes give place to a very
complex dynamics in the short term. This behavior can be naturally character-
ized as “noise”: researchers interested in the long-term behavior will discard
it as much as possible. But it turns out that decisions must be taken, in certain
circumstances, on a weekly basis. Thus, besides the long-term behavior, it is also
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desirable to try to understand better the complex short-term behavior.
The sliding-window approach can be useful for characterizing the different stages
of the evolution of the variables of interest, given that it considers the informa-
tion associated to different time intervals. Here we focus in daily cases, but a
similar analysis can be carried out for the daily deaths.

Figure 10: Belgium. Moving average (l=7). Daily infected cases (up). Sliding-window
method: permutation entropy (down left) and wavelet entropy (down right).

One may wonder whether the entropy could be made smaller by getting rid
of the fluctuations and smoothing the curves with a suitable method. This is
important for studies that focus in the short-middle term behavior of
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the variables. A concrete possibility is to use a moving average, that replaces
a given value of the random variable by the mean of an interval of length l cen-
tered at that point. As an example, the curves displayed in Our World in Data
[22] use a moving average with l = 7. The resulting curve will depend on the
chosen value of l. If l is high, we make the short-term fluctuations look smoother.
But l cannot be taken too large (compared to the characteristic size of the varia-
tions of the curve), because doing so could destroy all the valuable information
contained in the curve. Thus, which value for l should we choose? One possi-
bility could be to use the value of l for which the entropy is minimal, while the
large behavior of the curve is preserved. The reason for doing this is that entropy
quantifies uncertainty: in order to maximize the information to be extracted from
the data, one should thus minimize the entropy.

In order to see how the entropic quantifiers depend on the optimal value of
the smoothing parameter l, let us illustrate with an example. In Figure 1 we
show, as an example, the daily new cases of United Kingdom, first, without any
smoothing (which is equivalent to l = 1), and then, the curve obtained for l = 7.
Notice that the daily new cases display spikes not disappearing after application
of the smoothing procedure.

3.1 Entropy quantifiers probability distributions for a test signal

Let us consider the test signal of Figure 2 which is plotted with its
Fourier Spectrum. It has different frequencies at different times. In Figure 3
the Discrete Wavelet Transform absolute coefficients are shown.

In order to study the variation in time of the information-theory quantifiers
a time window Ij of length lw is chosen, and the permutation and wavelet
entropies, SP (Ij) and SW (Ij), associated with the interval Ij are calculated
(see Figure 4).

In Figure 5, permutation entropy calculations are presented for the
fixed window. The window considered of the test signal has intervals where
it is strictly increasing or decreasing. As consequence the ordinal patterns are
stored in two symbolic patterns, corresponding to that behavior, and the entropy
has a low value. On the other hand, when white noise is added to the test signal
(see Figure 5), fluctuations are high and the probability distribution is near the
uniform distribution, with very high entropy.

The probability distributions obtained using wavelet entropy and the values
of the entropy quantifiers are shown in Figure 6. In this case, the probability
distributions are similar, they are not affected by the fluctuations.
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Figure 11: South Africa. Moving average (l=7). Daily Infected Cases (up).
Sliding-window method: permutation entropy (down left) and wavelet en-
tropy (down right).

3.2 Entropic quantifiers for time series of COVID-19

For the time series of the COVID-19 pandemic we use a sliding-window
approach to study the change of the quantifiers in time. It consists in fixing a
time window length w and computing the permutation and wavelet entropies,
SP (Ij) and SW (Ij), associated with the intervals Ij = {xj , xj+1, . . . , xj+w}.
Finally, we plot SP (Ij) and SW (Ij) as a function of j. This methodology is
suitable for studying the behavior of a time series at different times [10].
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As an example, in Figures 7 and 8 we show the permutations and wavelet
entropies of the sliding windows, with l = 1, and using moving average (l = 7).
As it was expected, the entropies decrease when the curve is smoothed.

In Figures 9, 10 and 11, we show the daily infected cases and the sliding-
window curves for South America, Belgium and South Africa, respectively.
For both entropies, windows of length lw = 64 were considered, and D = 4
was chosen in the permutation case.

With regards to the election of the relevant parameters in our computations,
it is worth mentioning that the value of D must be consistently less than the
number of points N of the analyzed data series. Bandt and Pompe have recom-
mended to work with D = 3, . . . , 7. According to reference [23], N ≫ D! must
be verified. Since we have taken N = lw = 64, the largest possible value of
D! so that at least lw > D! is fulfilled, is 24 and thus we have chosen D = 4.
We have also analyzed the data series with D = 3 and 5, obtaining conceptually
similar results to those with D = 4. For the other parameter of the methodol-
ogy, the embedding delay τ , there is a consensus in the literature to take τ = 1,
as originally considered by Bandt and Pompe [2]. We have also varied τ
verifying consistency.

The mean values of the permutation and wavelet entropies associated with
the sliding-window method for different countries, are depicted in Figures 12
and 13, for windows lengths = 64, and for l = 1 and l = 7. For those countries,
we found that using l = 7 is suitable for minimizing the entropy. Notice that
this methodology might depend on the given country, but also on the smoothing
method chosen.

It is clear that the mean values tend to go down as the smoothing
parameter grows. But not too much! Even when the empirical curves are
smoothed (using moving averages), their informational content –from the point
of view of information quantifiers– is still low. This result might be indicat-
ing that the dynamics of the different variables have an intrinsically complex
dynamics (and that the complexity is not only originated in noise).

4 Wavelet coherence

In this section, we turn on the study of how the different time series
are correlated. From the information-theory perspective, the wavelet coherence
has been shown to be useful to study relations between time series, specially for
nonstationary ones. Here, we formulate the following question: how do the
curves for daily new cases and daily deaths correlate for a given country?
One would expect that, after the successful application of public health policies
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Figure 12: Mean values of permutation and wavelet entropies for different countries,
l = 1.

Figure 13: Mean values of permutation and wavelet entropies for different countries,
with l = 7.

–such as vaccination campaigns and improvements in the health system–, the
number of deaths drops off, even if daily new cases increase. How is it possible
to quantify this? This is a nontrivial matter, given that different countries display
different behaviors with regard to this point. The wavelet coherence has the ad-
vantage that it allows to compare different curves in the time–frequency plane.
This allows for a powerful technique for detecting similarities between curves
that can be nonstationary. We analyzed the wavelet coherence between daily
new cases and daily deaths curves for different countries. One can check, for
example, in Figures 14, that for Indonesia the daily new
cases and daily deaths seem to show great degree of similarity in the time-
frequency plane. This is reflected in the yellow zones (corresponding to high val-
ues, i.e. near 1) of the wavelet coherence. Contrarily, South America
(see Figure 15) show a clear decoupling in the wavelet coherence, especially dur-
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ing the last months. This might reflect the effect of a successful health policies,
possibly including vaccination campaigns. These results seem to indicate that
the wavelet coherence could be considered as a suitable quantitative indicator
for a change of behavior in the evolution of the pandemic.

Figure 14: Indonesia. Wavelet coherence between daily new cases and daily deaths.

Figure 15: South America. Wavelet coherence between daily new cases and daily
deaths.
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5 Conclusions

In this work we have applied different information quantifiers for the study of
the COVID-19 time series. Our contribution extends previous works and adds
new aspects of the informational analysis.

We have analyzed the behavior of the sliding-window method for different
degrees of smoothing. We have found that, even if the curves are smoothed,
the mean values of the entropic quantifiers associated with the sliding-window
method decrease, but can still be considered high. This results suggest a proce-
dure for preprocessing data in mathematical modeling: if one wants to get rid
of the highly unpredictable short and medium-term fluctuations, it is possible to
choose the smoothing parameter in such a way that it minimizes the mean value
of the entropy, while still preserving the general (long-term) shape of the curve.

In Section 4, we have studied the interdependence of the acquired data by ap-
pealing to the wavelet coherence. In particular, we have found that the
daily new cases and daily deaths curves decouple in some countries. This can be
attributed to the effective impact of public health policies including
vaccination campaigns. The wavelet coherence seems to be a good candidate
measure to quantify the change of behavior in the evolution of the pandemics.
It could be expected in a further work a COVID-19 time series analysis using
wavelet entropy in a two-dimensional context [18].

Taken as a whole, our results indicate that the analysis based on information
quantifiers yields interesting clues to better understand the unpredictable behav-
ior of the time series associated with the COVID-19 pandemic.
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