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Abstract
We present an alternative approach to semistability and moduli spaces

for coherent systems associated with decorated vector bundles. In this
approach, it seems possible to construct a Hitchin map. We relate some
examples to classical problems from geometric invariant theory.

Keywords: coherent system; moduli space; Hitchin map; first fundamental the-
orem of invariant theory.

Resumen
En estas notas se presenta un nuevo enfoque para el estudio de las

condiciones de semi-estabilidad, así como de los espacios de móduli, de
los sistemas coherentes asociados a fibrados vectoriales con estructura adi-
cional. Bajo este enfoque, se abre la posibilidad de definir un morfismo de
Hitchin. Se muestra, además, la relación entre algunos ejemplos concretos
con problemas clásicos presentes en la teoría geométrica de invariantes.
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primer teorema fundamental de la teoría de invariantes.
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1 Introduction

The group G := GLr(C) is the group of linear automorphisms of the complex
vector space Q := Cr. So, tautologically, there is the action

G×Q −→ Q

(g, x) 7−→ g · x.

There are many actions which may be derived from it, e.g.,

1. the action

G×Matr(C) −→ Matr(C)
(g,m) 7−→ g ·m · g−1

of G on the vector space of (r × r)-matrices,

2. the action

G×Matr(C)⊕2 −→ Matr(C)
(g,m1,m2) 7−→ (g ·m1 · g−1, g ·m2 · g−1)

of G on the vector space of pairs of (r × r)-matrices,

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 28(1): 1–38, Jan–Jun 2021



COHERENT SYSTEMS 3

3. for 1 ≤ s ≤ r − 1, the action

G×Grs(Q) −→ Grs(Q)

(g,R) 7−→ g ·R

of G on the Graßmannian variety Grs(Q) of s-dimensional sub vector
spaces of Q, and

4. for a ≥ 2 and 1 ≤ s ≤ a · r − 1, the action

G×Grs(Q
⊗a) −→ Grs(Q

⊗a)

(g,R) 7−→ g ·R

of G on the Graßmannian variety Grs(Q
⊗a) of s-dimensional sub vector

spaces of Q⊗a. Here, G acts on Q⊗a by the a-fold tensor power of the
initial “tautological” action of G on Q.

The task would be to describe the set of G-orbits in the respective space. For
the original action, there are two orbits, namely {0} and Q \ {0}. In Example
(3), there is only one orbit. For Example (1), there is, e.g., the theory of the Jor-
dan normal form which exhibits in each orbit a “nice” representative. However,
Case (2) has not been solved, so far, and is, in fact, considered a wild problem
which one does not expect to solve completely. The same goes for Case (4). In
order to say something meaningful in those cases, we need to endow the set of
orbits with an additional structure. The easiest structure is that of a topological
space — simply endow the set of orbits with the quotient topology. As algebraic
geometers, we prefer the structure of an algebraic variety. If the set of G-orbits
carries the structure of an algebraic variety, the topological space described be-
fore needs to be a Hausdorff space. If there are non-closed orbits, as in Example
(1) for r ≥ 2, this is not true. So, we may hope at best to equip the set of
closed orbits with the structure of an algebraic variety. In the case that G acts
on an affine variety, such as in Example (1) and (2), Hilbert’s seminal work [10]
and [11], as reinterpreted by Mumford [22], shows that the set of closed orbits
carries a natural structure of an affine algebraic variety. That variety is called
the categorical quotient. If G acts on a projective variety as in Example (3) and
(4), then one needs an additional datum, called linearization, in order to find a
G-invariant open subset U , such that the set of closed orbits inside U carries the
structure of a projective variety and yields the categorical quotient (see [22]).

Before we proceed, let us mention some related actions which occur in ap-
plications. First, we look at the diagram

1 −→ 2 −→ · · · −→ n− 1 −→ n
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4 A.H.W. SCHMITT

and pick positive integers r1, ..., rn. Then, there is the action

n
ą

i=1

GLri(C)×
n−1⊕
i=1

Matri+1,ri(C) −→
n−1⊕
i=1

Matri+1,ri(C)

(g1, ..., gn,m1, ...,mn−1) 7−→ (g2 ·m1 · g−1
1 , ..., gn ·mn−1 · g−1

n−1).

In this case, there are only finitely many orbits, and representatives are direct
sums of the basic diagrams

0 −→ · · · −→ 0 −→ C id−→ · · · id−→ C −→ 0 −→ · · · −→ 0.

This allows to classify orbits by bar codes and plays an important rôle in per-
sistent homology and big data analysis [24]. More generally, for each directed
graph and choice of a positive integer for each vertex, one has a similar action.
There are either finitely many orbits, or the classification problem is as complex
as the one for Example (1), or the problem is as wild as Example (2). (We refer
to [24], Appendix A, for a guide to the literature.) Some of the latter diagrams
are considered in control theory. The choice of a linearization is important for
obtaining compactifications of moduli spaces of linear systems. We refer to [9]
and [1] for overviews and general results. The paper [12] explains the rôle of
Example (1) in control theory more explicitly.

Now, we work relative to a smooth projective algebraic curve X over the
complex numbers or a compact Riemann surface. Given an action

σ : G× V −→ V

of G = GLr(C) on a finite dimensional complex vector space V , corresponding
to the group homomorphism

% : G −→ GL(V )

g 7−→
(
v 7−→ σ(g, v)

)
,

called a representation, it is possible to associate with every algebraic or holo-
morphic vector bundle E of rank r on X an algebraic or holomorphic vector
bundle Eϱ on X with typical fiber V . In addition, we fix an algebraic or holo-
morphic line bundle L on X . The task, here, is to classify pairs (E, s) which
consist of an algebraic or holomorphic vector bundle E on X and a section
s : OX −→ Eϱ ⊗ L. (In fact, we may consider this problem over any algebraic
or complex analytic variety X . The case that X is a point is the one that we dis-
cussed at the beginning.) For the first action which we considered and L = OX ,
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COHERENT SYSTEMS 5

we look at vector bundles E together with a global section s ∈ H0(X,E).
These are the Bradlow pairs introduced in [3]. For Example (1) and L = ωX ,
the cotangent bundle of X , we have vector bundles E together with a twisted
endomorphism s : E −→ E ⊗ ωX . These are known as Higgs bundles (see
[13]). Building on these and many more examples, the author developed a pro-
cedure for constructing moduli spaces for these objects (see [32]). These moduli
spaces are the analogs to the categorical quotients discussed above. The differ-
ential geometric counterparts of these objects occur in mathematical physics in
the context of gauge theory ([35], Chapter V, Section 4-6). There is a so-called
Kobayashi–Hitchin correspondence between related objects in gauge theory and
semistable decorated vector bundles in the above sense ([21], [20]). The theory
of decorated vector bundles that we have just outlined is closely related to the
theory of stable gauged maps which has been used in quantum cohomology. We
refer to [7] for an introduction.

The example of the action of G on the Graßmannian has been generalized to
the moduli problem of Brill–Noether pairs or coherent systems. These are pairs
(E,Γ) in which E is a vector bundle of rank r and Γ ⊂ H0(X,E) is a subspace
of prescribed dimension. Raghavendra and Vishwanath [26] formulated a notion
of semistability for coherent systems which depends on a parameter δ ∈ Q>0

and constructed the moduli spaces for some values of δ. Constructions of mod-
uli spaces which work in general were given by King and Newstead [15] and
Le Potier [19]. In [34], the author considered the corresponding analog for the
action of G on Grs(Q

⊗a). To this end, we fix again a line bundle L on X . Then,
a coherent system is a pair (E,Γ) which consists of a vector bundle E of rank
r on X and a vector space Γ ⊂ H0(X,E⊗a ⊗ L). The paper [34] introduces
a notion of stability for these coherent systems which generalizes the notion of
Raghavendra and Vishwanath and seems quite natural. This notion also depends
on a stability parameter δ ∈ Q>0. The paper also contains a construction of
moduli spaces. However, the construction works only for stability parameters
below a certain threshold. In the explicit study of moduli spaces, the variation
of the moduli spaces with the stability parameter δ plays an important rôle and
the moduli spaces for large values of δ are typically easier to understand. We
refer to [39] and [4] for two characteristic examples. Motivated by this, we look
in this note at another possible notion of semistability which also depends on a
positive rational number δ. It is more complicated to state, but the construction
of moduli spaces we propose does not impose an upper bound on the stability
parameter. This approach follows the natural idea to construct the moduli spaces
for coherent systems as GLs(C)-quotients of the moduli spaces for decorated
vector bundles associated with %⊕s, % : GLr(C) −→ GL(Cr⊗a) being the a-
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6 A.H.W. SCHMITT

fold tensor power of the standard representation and s := dimC(Γ). In addition,
it seems that, for some of the moduli spaces, there exists a Hitchin map. Besides
the definition of semistability and a sketch of the construction of moduli spaces,
this note explores some examples which should help to understand the general
picture, in particular, the Hitchin map. In future work, we hope to address the
relation between the constructions of [34] and this note in order to fully under-
stand the variation of moduli spaces. We would also like to point out that twisted
versions of Brill–Noether pairs appear, e.g., in [38] and [14]. One fixes a vec-
tor bundle V on X and looks at pairs (E,Γ) where E is a vector bundle on X
and Γ ⊂ H0(X,E ⊗ V ) is a linear subspace. I was informed by Peter New-
stead that the case when both E and V vary is also of interest for Brill–Noether
theory. This motivates to develop the results of [34] and this note further to a
theory of coherent systems for decorated principal bundles. The case of Brill–
Noether pairs with varying E and V would correspond to the structure group
GLr(C)×GLs(C) and the natural representation of this group on Cr ⊗ Cs.

Notation

We will work on a connected smooth projective curve X of genus g at least two
which is defined over the field C of complex numbers, and we will fix a point
x0 ∈ X . We write OX(k) for OX(k · x0), and, given a coherent OX -module F ,
the symbol F(k) stands for the OX -module F ⊗

OX

OX(k), k ∈ Z.

Given a scheme S and a vector bundle A on S, we write P (A) for the pro-
jective bundle of lines in the fibers of A, i.e., for Proj(Sym⋆(A∨)). Occasion-
ally, we will also use P(A) := P (A∨), i.e., Grothendieck’s convention for the
projectivization.

For a cartesian product A × B in a category, we let πA : A × B −→ A and
πB : A×B −→ B be the natural projections.

2 Review of some moduli spaces of decorated bundles

In [6], a general theory for tuples of vector bundles on a smooth projective curve
X decorated with the help of a multihomogeneous representation was developed.
It includes the classification of triples (F,E, ϕ), consisting of a vector bundle F
of rank s, a vector bundleE of rank r, and a homomorphism ϕ : F −→ E⊗a⊗L,
for a fixed line bundle L on X . The case F ∼= O⊕s

X corresponds to coher-
ent systems. We will first review the relevant results from the theory of deco-
rated vector bundles from [30] and then present a moduli problem for decorated
pairs of vector bundles. It will be important to understand some features of that
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moduli problem in order to understand in which respects the moduli problem for
coherent systems is different.

2.1 Decorated vector bundles

Let a, s, and r be positive integers. Suppose that % : GLr(C) −→ GL(V ) is a
representation which is homogeneous of degree a, e.g., the a-th tensor power of
the standard representation with V = (Cr)⊗a.

Then, given a vector bundle E of rank r on X , we may use % to assign to E
a vector bundle Eϱ of rank dimC(V ). Fix also a line bundle L on X . A %-pair is
a pair (E,ϕ) which consists of a vector bundle E of rank r on X and a non-zero
homomorphism ϕ : O⊕s

X −→ Eϱ ⊗ L.
Recall that a weighted filtration of a vector bundle E on X is a pair (E•, α•)

in which

0 ( E1 ( · · · ( Ea ( E

is a filtration of E by subbundles and α• = (α1, ..., αa) is a vector of positive
rational numbers. For such a weighted filtration (E•, α•), we set

M(E•, α•) =

a∑
i=1

αi ·
(
deg(E) · rk(Ei)− deg(Ei) · rk(E)

)
.

Given a homomorphism ϕ : O⊕s
X −→ Eϱ ⊗L and a weighted filtration (E•, α•)

of E, the quantity µ(E•, α•;ϕ) is defined in [30], p. 175f, [32], p. 139.
Let δ be a positive rational number. A %-pair (E,ϕ) is δ-(semi)stable, if the

inequality

M(E•, α•) + δ · µ(E•, α•;ϕ)(≥)0

is satisfied, for every weighted filtration (E•, α•) of E.
For the rest of this section, we fix a line bundle M on X and look only at

%-pairs (E,ϕ) with det(E) ∼=M . Recall from [30], Theorem 2.3.7.1, that there
are critical values 0 =: c0 < c1 < · · · < ct < ct+1 := ∞, such that the notions
of δ-semistability and δ-stability for %-pairs (E,ϕ) with det(E) ∼= M remain
constant within each of the intervals (ci, ci+1) ∩Q, i = 0, ..., t. A %-pair (E,ϕ)
is asymptotically (semi)stable, if it is δ-(semi)stable with respect to a stability
parameter δ ∈ (ct,∞) ∩Q.
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8 A.H.W. SCHMITT

Lemma 2.1 A %-pair (E,ϕ) is asymptotically (semi)stable if and only if it
satisfies the following two conditions.

a) µ(E•, α•;ϕ) ≥ 0, for every weighted filtration (E•, α•) of E,

b) M(E•, α•)(≥)0, for every weighted filtration (E•, α•) of E with µ(E•,
α•;ϕ) = 0.

Remark 2.2 Let η be the generic point of X , K := C(X) the function field of
the curve X , E the restriction of E to η, and V the restriction of Eϱ to η. Note
that E and V are vector spaces over the field K. The restriction of ϕ to η yields
a point ϕη ∈ Hom(Ks,V). Since we are working in characteristic zero, the
semistability of ϕη may be tested with the Hilbert–Mumford criterion (see [32],
Section 1.7.1, for a brief discussion). Therefore, ϕη is semistable if and only if
Condition a) in Lemma 2.1 is satisfied. In this case, we say that ϕ is generically
semistable.

For a positive rational number δ, we let Pδ
X/M/L/ϱ be the moduli space of δ-

semistable %-pairs (E,ϕ) in which det(E) ∼= M . (We will briefly review
the construction in Section 4.1.) For δ ∈ (ct,∞), the above moduli space is
equipped with a special gadget, the so-called Hitchin map. To this end, we set
H := Hom(Cs, V ). The coordinate algebra of H is isomorphic to the symmetric
algebra of H∨,

C[H] ∼= Sym⋆(H∨) =
⊕
d≥0

Symd(H∨),

and the action of SLr(C) preserves this grading, so that, in particular,

C[H]SLr(C) =
⊕
d≥0

Symd(H∨)SLr(C).

Note that the GIT quotient of P (H) by the action of SLr(C) is given as

P (H)//SLr(C) := Proj(C[H]SLr(C)).

For any k > 0, we set

sym⋆
k :=

⊕
d≥0

symd
k, symd

k := Symk·d(H∨)SLr(C), d ≥ 0.

Then,
P (H)//SLr(C) ∼= Proj(sym⋆

k), k > 1.
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COHERENT SYSTEMS 9

We may choose k > 0 in such a way that sym⋆
k is generated by sym1

k, i.e,

P (H)//SLr(C) ↪→ P(sym1
k).

Remark 2.3 A function I ∈ C[H] is a %-semiinvariant, if there exists an integer
w, such that

∀g ∈ GLr(C)∀h ∈ H : I(g · h) = det(g)w · I(h).

The ring C[H]SLr(C) agrees with the ring of %-semiinvariants. For a homoge-
neous element I ∈ C[H]SLr(C), the number a · deg(I) is a multiple of r. In
particular, we may write a · k = r · l.

Set
h1 := P

(
sym1

k ⊗H0(X,M⊗l ⊗ L⊗k)
)
. (2.3.1)

Let I1, ..., Iu be a basis for sym1
k and ϕ : O⊕s

X −→ Eϱ ⊗ L a homomorphism.
We pick a suitable open covering (Ui)i∈I and trivializations Eϱ|Ui

∼= V ⊗ OUi ,
L|Ui

∼= OUi , i ∈ I . So, ϕ defines morphisms fi : Ui −→ H and, thus, functions
Ij ◦ fi, i ∈ I . For j ∈ { 1, ..., u }, the functions Ij ◦ fi, i ∈ I , glue to a section

Ij(ϕ) ∈ H0(X,M⊗l ⊗ L⊗k).

If ϕ is generically semistable, then there exists an index j ∈ { 1, ..., u } with
Ij(ϕ) 6= 0, so that we may define

I(ϕ) :=
[
I1(ϕ) : · · · : Iu(ϕ)

]
∈ h1.

This construction leads to the morphism

χ1 : Pδ
X/M/L/ϱ −→ h1

[E,ϕ] 7−→ I(ϕ).

which we call the Hitchin map (see Page 24 for more details). Since the moduli
space Pδ

X/M/L/ϱ is projective, the Hitchin map is automatically projective.

Remark 2.4 The above construction works also for negative a and the value
a = 0. In the latter case, the line bundle M does not enter the definition of the
Hitchin space, and we do not have to fix it, i.e., it suffices to fix just the degree of
the participating vector bundles. The equivalence relation has to be formulated
as for the example of the adjoint representation discussed in the next section.
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10 A.H.W. SCHMITT

2.2 Example: Coherent Higgs systems

In the special case s = 1, the moduli space Pδ
X/M/L/ϱ solves the classifica-

tion problem for pairs (E,Γ) which consist of a vector bundle E and a one-
dimensional subspace Γ ⊂ H0(X,Eϱ ⊗ L), i.e., for certain coherent systems.
As pointed out in Remark 2.4, we may apply the results also in the case a = 0,
and we do not need to fix the determinant in that case. In particular, we may
apply them to the adjoint representation of GLr(C) on Matr(C). Since this is
the starting point of the present work, let us discuss this example in some detail.

The classification problem

We consider pairs (E,ϕ) that consist of a vector bundle E on X and a non-zero
twisted endomorphism ϕ : E −→ E ⊗L. We say that (E1, ϕ1) is isomorphic to
(E2, ϕ2), if there exist an isomorphism ψ : E1 −→ E2 and a non-zero complex
number λ ∈ C⋆ with

ϕ2 = λ ·
(
(ψ ⊗ idL) ◦ ϕ1 ◦ ψ−1

)
.

The set of isomorphism classes of such pairs clearly agrees with the set of iso-
morphism classes of coherent Higgs systems (E,Γ) with dimC(Γ) = 1 pre-
sented in the introduction.

Asymptotic semistability

We let Hδ
X(r, d) be the projective moduli space of δ-semistable pairs (E,ϕ) with

rk(E) = r and deg(E) = d. As in Section 2.1, we let 0 =: c0 < c1 < · · · <
ct < ct+1 := ∞ be the critical values for the concept of δ-semistability for pairs
(E,ϕ) with deg(E) = d. The two extremal cases have special properties.

Lemma 2.5 Suppose that δ ∈ (c0, c1)∩Q. Then, (E,ϕ) is δ-(semi)stable if and
only if the following two conditions are satisfied.

a) The vector bundle E is semistable.

b) For every weighted filtration (E•, α•) ofE with µ(Ei) = d/r, i = 1, ..., a,
one has µ(E•, α•;ϕ)(≥)0.

Remark 2.6 Note that the lemma shows that (E,ϕ) is stable for δ ∈ (c0, c1) ∩
Q, if E is a stable vector bundle. This shows that

P (T ⋆
Ms

X(r,d)) ⊂ Hδ
X(r, d).

Here, Ms
X(r, d) is the moduli space of stable vector bundles of rank r and degree

d on X , and T ⋆
Ms

X(r,d) is its cotangent bundle.
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Lemma 2.7 Suppose that δ ∈ (ct,∞)∩Q. Then, (E,ϕ) is δ-(semi)stable if and
only if the following two conditions are satisfied.

a) The twisted endomorphism ϕ is not nilpotent, i.e., (ϕ⊗ idL⊗(r−1)) ◦ · · · ◦
ϕ : E −→ E ⊗ L⊗r 6= 0.

b) For every subbundle 0 ( F ( E with ϕ(F ) ⊂ F ⊗L, one has µ(F )(≥)0.

Remark 2.8 i) Part b) implies that (E,ϕ) is a semistable Higgs bundle. For
δ ∈ (ct,∞), the moduli space Hδ

X(r, d) is the divisor that compactifies Hitchin’s
moduli space HX(r, d) in the compactification constructed in [28]. It can be
interpreted as a C⋆-quotient of the latter, i.e.,

Hδ
X(r, d) = HX(r, d)//C⋆.

ii) Define h :=
r⊕

i=1
H0(X,L⊗i) and let C⋆ act on H0(X,L⊗i) with weight

i, i = 1, ..., r, Here, we may define h1 := h//C⋆ as the resulting weighted
projective space. Condition b) grants that there is a Hitchin map

χ1 : Hδ
X(r, d) −→ h1.

It is automatically projective, because Hδ
X(r, d) is projective.

The rank two case

A problem for applications might be that the Hitchin map χ1 is not defined on
the whole projectivized cotangent bundle P (T ⋆

Ms
X(r,d)).

Example 2.9 Let X be a curve of genus g ≥ 2. We look at extensions

0 −→ OX
ι−→ E

π−→ ωX −→ 0.

These extensions are parameterized by Ext1(ωX ,OX) ∼= H1(X,ω∨
X) ∼= H0(X,

ω⊗2
X )∨. This is a vector space of dimension 3g − 3. Proposition 2.4 in [17] and

[16], Lemma 1, imply that there exist extensions for which E is stable. Pick an
extension for which E is stable and define

ϕ := (ι⊗ idωX ) ◦ π : E −→ E ⊗ ωX .

Then, (E,ϕ) defines a point in the projectivized cotangent bundle, but ϕ is
clearly nilpotent, so that χ1 is not defined at (E,ϕ).

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 28(1): 1–38, Jan–Jun 2021



12 A.H.W. SCHMITT

There is the one parameter subgroup

λ : C⋆ −→ SL2(C)

z 7−→
(
z−1 0
0 z

)
.

Note

∀m =

(
a b
c d

)
, ∀z ∈ C⋆ : λ(z) ·m · λ(z)−1 =

(
a z−2 · b

z2 · c d

)
.

This shows that, for a vector bundle E of rank two, a non-zero homomorphism
ϕ : E −→ E ⊗ L, and a sub line bundle F ⊂ E, one has

µ(0 ( F ( E, (1);ϕ) =


−2, if F ⊂ Ker(ϕ)
0, if 0 6= ϕ(F ) ⊂ F ⊗ L
2, if ϕ(F ) 6⊂ F ⊗ L

. (2.9.1)

Example 2.10 We return to the setting of Example 2.9. A sub line bundle F ⊂ E
distinct from OX will not be invariant under ϕ. So, it follows from (2.9.1) that
(E,ϕ) will be δ-(semi)stable if and only if the condition of δ-(semi)stability is
satisfied for the sub line bundle OX of E. This shows that (E,ϕ) is δ-stable for
δ < g − 1, properly (g − 1)-semistable, and not δ-semistable for δ > g − 1.

2.3 Decorated pairs of vector bundles

We fix the same data as at the beginning of Section 2.1. A holomorphic %-triple
is a triple (F,E, ϕ) which consists of a vector bundle F of rank s on X , a vector
bundle E of rank r on X , and a non-zero homomorphism ϕ : F −→ Eϱ ⊗ L.

Remark 2.11 We may write F as F ′ ⊗ L for some other vector bundle F ′.
Then, ϕ corresponds to a homomorphism ϕ′ : F ′ −→ Eϱ. So, one might assume
without loss of generality that L = OX .

Semistability

The representation %̃ : GLs(C) × GLr(C) −→ GL(H) is bihomogeneous of
bidegree (−1, a), i.e., for all z, w ∈ C⋆, %̃(z · Es, w · Er) = z−1 · wa · idH.
Therefore, the results of Section 3 in [6] may be applied.

Let (F,E, ϕ) be a holomorphic %-triple. For weighted filtrations (F•, β•)
and (E•, α•) of F andE, respectively, Formula (20) in [6] may be used to define

µ
(
(F•, β•), (E•, α•);ϕ

)
.
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COHERENT SYSTEMS 13

Fix a positive rational number δ. We say that a holomorphic %-triple is δ-
(semi)stable, if the inequality

M(F•, β•) +M(E•, α•) + δ · µ
(
(F•, β•), (E•, α•);ϕ

)
(≥)0

is satisfied, for every pair ((F•, β•), (E•, α•)) of weighted filtrations of
F and E.

For the following, we fix line bundles N and M on X . As before, there are
critical values 0 =: c0 < c1 < · · · < ct < ct+1 := ∞, such that the notions of δ-
semistability and δ-stability for holomorphic %-triples (F,E, ϕ) with det(F ) ∼=
N and det(E) ∼=M remain constant within each of the intervals (ci, ci+1) ∩Q,
i = 0, ..., t. We say that (F,E, ϕ) is asymptotically (semi)stable, if it is δ-
(semi)stable with respect to a stability parameter δ ∈ (ct,∞) ∩Q.

Lemma 2.12 A holomorphic %-triple (F,E, ϕ) is asymptotically (semi)stable if
and only if it satisfies the following two conditions.

a) µ((F•, β•), (E•, α•);ϕ) ≥ 0, for all pairs ((F•, β•), (E•, α•)) of weight-
ed filtrations,

b) M(F•, β•)+M(E•, α•)(≥)0, for all pairs ((F•, β•), (E•, α•)) of weight-
ed filtrations with µ((F•, β•), (E•, α•);ϕ) = 0.

Remark 2.13 We use the notation from Remark 2.2. In addition, we define F
as the restriction of F to η. So, the restriction of ϕ to η yields a point ϕη ∈
Hom(F,V). The group SLs(K) × SLr(K) acts on that vector space. The point
ϕη will be semistable with respect to that group action if and only if Condition
a) in Lemma 2.12 is satisfied. In that case, we call ϕ generically semistable.

For δ ∈ Q>0, we let T δ
X/N/M/L/ϱ be the moduli space of δ-semistable holo-

morphic %-triples (F,E, ϕ) in which det(F ) ∼= N and det(E) ∼= M . For
δ ∈ (ct,∞)∩Q, there will be again a Hitchin map. Set S := SLs(C)×SLr(C).
This group acts on H = Hom(Cs, V ). This time, we will be interested in the
invariant ring

C[H]S =
⊕
d≥0

Symd(H∨)S.

Fix k > 0 and define

s̃ym
⋆
k :=

⊕
d≥0

s̃ym
d
k, s̃ym

d
k := Symk·d(H∨)S, d ≥ 0.

As before,
P (H)//S ∼= Proj(s̃ym

⋆
k), k > 0.
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14 A.H.W. SCHMITT

We choose k > 0 in such a way that s̃ym⋆
k is generated by s̃ym

1
k. In particular,

P (H)//S ↪→ P(s̃ym1
k).

Write k = s · n and a · k = r ·m. The Hitchin space is now

h2 := P
(
s̃ym

1
k ⊗H0(X,N⊗−n ⊗M⊗m ⊗ L⊗k)

)
. (2.13.1)

For δ ∈ (ct,∞) ∩Q, we will have a Hitchin map

χ2 : T δ
X/N/M/L/ϱ −→ h2.

In the next section, we will discuss examples of GIT problems which will help
to understand Hitchin spaces and maps (see Section 5).

3 The underlying problem from geometric invariant
theory

The understanding of the notion of semistability for coherent systems and the
Hitchin map rests on the analysis of the underlying model given by the repre-
sentation of the reductive affine algebraic group SLs(C)× SLr(C) on the vector
space Hom(Cs, V ) or rather its projectivization. As an illustration, we look at
two specific examples.

Remark 3.1 i) We may view the GIT problem just introduced as the problem
of classifying coherent systems when the base variety is a point rather than a
smooth projective curve X .

ii) The GIT quotient can be formed in two steps, e.g., by first dividing by the
action of the group SLs(C) and then by the action of the group SLr(C). This
means that we may alternatively study the action of SLr(C) on the Graßmannian
G of s-dimensional subspaces of V . We will see in Section 4.2 how these two
viewpoints lead to different approaches for constructing moduli spaces for co-
herent systems on a smooth projective curve X which seem to work for different
ranges of the stability parameter.

3.1 Symmetric tensors

We choose a = s = r = 2 and look at the subspace Sym2(C2) ⊂ (C2)⊗2. Let
us set Q := C2. Denote by (e0, e1) the standard basis of Q and by (x0, x1) the
dual basis of Q∨. The space Sym2(Q∨) is the space of quadratic forms on Q.
We write a quadratic form q ∈ Sym2(Q∨) as

q = q(x0, x1) = a · x20 + 2b · x0x1 + c · x21.
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COHERENT SYSTEMS 15

We may represent q also by the symmetric (2× 2)-matrix

mq =

(
a b
b c

)
.

Let

ω : SL2(C) −→ SL2(C)
g 7−→ (g−1)t

be the outer automorphism. If τ : SL2(C) −→ SL(Sym2(Q∨)) is the second
symmetric power of the dual of the standard representation, the representation
κ := τ ◦ ω is isomorphic to the second symmetric power of the standard rep-
resentation of SL2(C) on Q. So, we may write the action associated with the
representation of SL2(C) on Sym2(Q) as

SL2(C)× Sym2(Q∨) −→ Sym2(Q∨)

(g, q) 7−→
(
v 7−→ q(gt · v)

)
(g,mq) 7−→ g ·mq · gt.

Next, note that there is the non-degenerate anti-symmetric pairing

Q×Q −→ C
(v, w) 7−→ det(v|w).

It is also invariant under the action of SL2(C). So, it induces an isomorphism
Q ∼= Q∨ of representations of SL2(C). We write H := Hom(Q∨,Sym2(Q∨))
and S := SL2(C) × SL2(C). By our conventions, the S-action A on H has the
form (((

α β
γ δ

)
, g

)
, (mq1 ,mq2)

)
7−→ (3.1.1)

7−→
(
g · (α ·mq1 + γ ·mq2) · gt, g · (β ·mq1 + δ ·mq2) · gt

)
.

As recalled in Remark 3.1, ii), we may first form the quotient by the action
of the second factor. For this, we need to determine the invariant ring

C[H]SL2(C).

It appears from time to time in the literature, but we haven’t found a recent
reference where it is explicitly determined. So, let us do it, here. We look at a
point (q1, q2) ∈ H with

(mq1 ,mq2) =

((
a1 a2
a2 a3

)
,

(
b1 b2
b2 b3

))
.
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16 A.H.W. SCHMITT

The first invariant is the determinant of mq1 , i.e., we set

∆1(q1, q2) := a1 · a3 − a22.

Likewise, the second invariant is given by the determinant of mq2 , that is,

∆2(q1, q2) := b1 · b3 − b22.

The third invariant is the so-called codiscriminant. It is defined by the formula

Γ(q1, q2) :=
1

2
· a1 · b3 +

1

2
· a3 · b1 − a2 · b2.

Remark 3.2 i) Suppose that I ∈ C[H]SL2(C) is an invariant. Denoting by E2

the identity matrix, we define, for h ∈ SL2(C), the map

h⋆(I) : H −→ H

(q1, q2) 7−→ I
(
A
(
(h,E2), (q1, q2)

))
.

Since the two actions of SL2(C) on H commute with each other, it follows that
h⋆(I) is also an element of C[H]SL2(C). Now, let

h =

(
α β
γ δ

)
∈ SL2(C).

Then, one computes

h⋆(∆1) = α2 ·∆1 + γ2 ·∆2 + 2(αγ) · Γ,
h⋆(∆2) = β2 ·∆1 + δ2 ·∆2 + 2(βδ) · Γ, (3.2.1)

h⋆(Γ) = (αβ) ·∆1 + (γδ) ·∆2 + (αδ + βγ) · Γ.

We can choose h, such that αγ 6= 0. Since ∆1, ∆2, and h⋆(∆1) are invariants,
the first formula shows that Γ is an invariant, too.

ii) The above computations are a special case of a procedure for computing
the invariant rings for direct sums of representations (see [36]).

iii) We now explain what it means that all three invariants ∆1, ∆2, and Γ
vanish at a point (q1, q2) ∈ H. As is well known, ∆i vanishes if and only if mqi

has rank at most one, i = 1, 2. Recall that a (2× 2)-matrix m defines the linear
map

Dm : Q −→ Q∨

v 7−→
(
w 7−→ vt ·m · w

)
.

The radical Rad(m) of m is the kernel of Dm. We infer that ∆1(q1, q2) =
∆2(q1, q2) = Γ(q1, q2) = 0 is equivalent to the following:
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COHERENT SYSTEMS 17

a) rk(mqi) ≤ 1, i = 1, 2, and,

b) if q1 6= 0 and q2 6= 0, then Rad(mq1) = Rad(mq2).

Proposition 3.3 The invariants ∆1, ∆2, and Γ are algebraically independent
and generate the invariant ring, i.e.,

C[H]SL2(C) = C[∆1,∆2,Γ].

Proof. We will use Hilbert’s “algorithm” for computing the invariant ring (see
[11], [37], Section 4.6). We leave it to the reader to check that these invariants
are algebraically independent. This will also be a consequence of the following
discussion.

Abbreviate R := C[∆1,∆2,Γ] and S := C[H]SL2(C). The first thing to
show is that ∆1, ∆2, and Γ cut out the nullforms. Below, we will determine the
nullforms with respect to the action of the second factor of S with the Hilbert–
Mumford criterion. It turns out that the nullforms are exactly those pairs satis-
fying the conditions stated in Remark 3.2, iii), i.e., exactly those pairs in which
∆1, ∆2, and Γ vanish. Then, according to [37], Theorem 4.6.1, R ⊂ S is a
finite ring extension. Since R is a normal ring, it suffices to show that the field
extension Q(R) ⊂ Q(S) has degree one. This amounts to showing that, for the
morphism

π : Spec(S) −→ Spec(R),

there is a non-empty open subset U ⊂ Spec(S), such that π−1(U) −→ U is
bijective. We look at pairs (q1, q2), such that ∆1(q1, q2) 6= 0, ∆2(q1, q2) 6= 0,
and q1 and q2 have no common linear factor.

Since SL2(C) acts triply transitively on P1, we may assume that there exist
complex numbers λ, µ ∈ C⋆, and a ∈ C \ { 0, 1 } with

q1 = λ · x0x1 and q2 = µ · (x0 − x1) · (x0 − a · x1).

The matrix

g :=

(
0 i
i 0

)
∈ SL2(C)

transforms q1 into −λ · x0x1 (and q2 into −a · µ · (x0 − x1) · (x0 − (1/a) · x1)).
So, we may assume

λ ∈
{
z = u+ v · i | (v > 0) ∨ (v = 0 ∧ u > 0)

}
.

Under this assumption ∆1(q1, q2) = −λ2 allows to reconstruct λ. Next,

∆2(q1, q2) = −1

4
· µ2 · (a− 1)2, Γ(q1, q2) = λ · µ · (a+ 1).
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18 A.H.W. SCHMITT

Since we know λ, we may determine the ratio(
a− 1

a+ 1

)2

.

Now, suppose that b is another complex number with(
a− 1

a+ 1

)2

=

(
b− 1

b+ 1

)2

.

If
a− 1

a+ 1
=
b− 1

b+ 1
,

then a = b. Moreover, if µ · (a + 1) = ν · (b + 1) and a = b, then also µ = ν.
If, on the other hand,

a− 1

a+ 1
=

1− b

b+ 1
,

then b = 1/a. The equality µ · (a+ 1) = ν · (b+ 1) then yields ν = a · µ. Pick
a complex number c with c2 = a. Then, the matrix

g :=

(
c 0
0 1

c

)
∈ SL2(C)

leaves q1 = λ · x0x1 invariant and transforms q2 = µ · (x0 − x1) · (x0 − a · x1)
into a · µ · (x0 − x1) · (x0 − (1/a) · x1). So, under the assumptions on q1 and q2
made above, we may reconstruct the SL2(C)-orbit of (q1, q2) from ∆1(q1, q2),
∆2(q1, q2), and Γ(q1, q2).

Proposition 3.4 Set Θ := ∆1 ·∆2 − Γ2. Then,

C[H]S = C[Θ].

Proof. The formulas in (3.2.1) show that the action of the first factor of S on
the vector space 〈∆1,∆2,Γ 〉 is isomorphic to the representation of SL2(C) on
Sym2(C2). The implies the assertion.

Remark 3.5 As the first (or second) formula in (3.2.1) shows, the zeros of Θ
correspond to pairs (q1, q2) ∈ H for which P (〈mq1 ,mq2 〉) has exactly one
point that corresponds to a matrix of rank one.

Let us determine the canonical nullforms with the Hilbert–Mumford criterion.
We define, for µ, ν ≥ 0 and µ > 0 or ν > 0, the one parameter subgroup

λµ,ν : C⋆ −→ S

z 7−→
((

z−µ 0
0 zµ

)
,

(
z−ν 0
0 zν

))
.
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COHERENT SYSTEMS 19

Let us record the weights of the different entries of a pair of matrices associated
with an element of H:((

−µ− ν2 −µ
−µ −µ+ ν2

)
,

(
µ− ν2 µ
µ µ+ ν2

))
.

Remark 3.6 i) We are looking for non-zero pairs of (2 × 2)-matrices in H for
which all weights are negative. If the second matrix is zero, this happens for
ν = 0.

ii) If µ = 0, then all weights will be negative if and only if the only non-zero
entry in both mq1 and mq2 is the top left one. One readily checks that (q1, q2) is
a nullform with respect to the action of the second factor of S if and only if the
conditions stated in Remark 3.2, iii), are satisfied.

iii) Let us assume that both q1 6= 0 and q2 6= 0 and that both µ 6= 0 and
ν 6= 0. Then, in mq2 , only the top left entry is non-zero and µ < ν2. This
forces the bottom right entry of mq1 to be zero. In other words, Rad(mq2) is an
isotropic subspace for mq1 .

iv) If mq1 and mq2 do not have a common isotropic subspace, then (q1, q2)
is stable with respect to the action of the second factor of S.

Proposition 3.7 A pair (q1, q2) ∈ H is semistable with respect to the action of
S if and only if a) 〈 q1, q2 〉 is a two-dimensional space and b) mq1 and mq2 have
no common isotropic subspace.

Proof. If (q1, q2) satisfies Condition a) and b), then it follows readily from the
previous discussions that (q1, q2) is semistable. Now, suppose that (q1, q2) fails
to meet Condition b). Since (α, β) 7−→ det(α·mq1+β ·mq2) has to admit a zero,
the vector space 〈mq1 ,mq2 〉 has a non-zero element of rank one. By applying
the action of the first factor of S, we may assume without loss of generality
that mq2 has rank one. Then, the previous computations immediately show that
(q1, q2) is a nullform.

The vector space H has dimension six, the group S has dimension six, as
well, but the categorical quotient H//S has dimension one and not zero. This
implies that there are no points in H which are stable with respect to the action
of the group S. Still, we have the following interesting observation.

Proposition 3.8 Every point (q1, q2) ∈ H which is semistable with respect to
the action of S is also polystable with respect to the action of S. In particular,
the quotient

H −→ H//S
is a geometric quotient
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Proof. A point (q1, q2) ∈ H is semistable (polystable) with respect to the ac-
tion of S if and only if it is semistable (polystable) with respect to the action
of the second factor S and the image of (q1, q2) in H//SL2(C) is semistable
(polystable) with respect to the action of the first factor of S ([23], Proposition
1.3.1 and 1.3.2). Now, for the action of SL2(C) on H//SL2(C) ∼= Sym2(Q∨),
every point which is semistable is also polystable, and the latter happens, ac-
cording to Proposition 3.7, if and only if 〈mq1 ,mq2 〉 is a two-dimensional space
and mq1 and mq2 have no common isotropic subspace. It follows from Remark
3.6, iv), that (q1, q2) is stable and, thus, polystable with respect to the action of
the second factor of S.

Remark 3.9 Suppose that (q1, q2) is semistable in the above sense. We also
need to know when the maximal weight is zero. If µ were zero, the lower right
entry of both mq1 and mq2 would have to be zero. This is ruled out by semista-
bility. So, the only possibility is that µ = ν2, and, in the matrix mq2 , only the top
left entry is non-zero (and the lower right entry of the first matrix is non-zero).

Example 3.10 a) The point (q1, q2) ∈ H corresponding to the matrices

mq1 =

(
0 1
1 0

)
and mq2 =

(
1 0
0 0

)
is semistable with respect to the action of the second factor of S but not with
respect to the action of S. In fact, mq2 is - up to a scalar multiple - the only
non-zero matrix in 〈mq1 ,mq2 〉 of rank one.

b) The S orbit of a point (q1, q2) ∈ H which is semistable with respect to the
action of S contains an element (r1, r2) with

mr1 =

(
1 0
0 0

)
and mr2 =

(
0 0
0 a

)
.

Here,
a2 = −4 ·Θ(r1, r2) = −4 ·Θ(q1, q2).

By requiring Im(a) > 0 or Im(a) = 0 and a > 0, we may make a unique.

3.2 Homomorphisms

For classical coherent systems, the model in geometric invariant theory would
be the action of GLs(C) × GLr(C) on the vector space Hom(Cs,Cr) and the
quest for invariants with respect to the action of the group SLs(C) × SLr(C).
This problem is, unfortunately, rather uninteresting. Invariants exist only in the
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case r = s and are given as polynomials in the determinant, in this case. So,
let us first look at the action of GLr(C) on the vector space Hom(Cs,Cr). The
invariants for the action of the special linear group SLr(C) are given by the first
fundamental theorem of invariant theory for the special linear group.

Theorem 3.11 For s < r, one has C[Hom(Cs,Cr)]SLr(C) = C, and, for s ≥ r,
the invariant ring is generated by the (r × r)-minors.

Proof. [5], Theorem 2.1.

Let us look at the special case s = r + 1. Then, C[Hom(Cs,Cr)]SLr(C) is

the symmetric algebra of the vector space
r∧
Cr+1. Now, the wedge product

Cr+1 ⊗
r∧
Cr+1 −→

r+1∧
Cr+1

shows that, as a representation of SLr+1(C),
r∧
Cr+1 is isomorphic to (Cr+1)∨.

In the construction of the Hitchin space h3 (4.6.2), we need to study the
action of SLr+1(C) on ((Cr+1)∨)⊕h, for some h > 0. So, we may use Theorem
3.11 again, in order to do this.

Remark 3.12 In connection with Hitchin spaces (see (2.3.1) and (4.6.2)), we
need to study invariants in S⊕h for an SLs(C)-module S and and h > 0.
There are generalizations of the first fundamental theorem of invariant theory
to this situation (see [36]). The module S itself is obtained from an invariant
ring C[T ]SLr(C) by picking a system of generators and homogenizing. So, in
order to find nice examples, one could start with situations where C[T ]SLr(C)

is already a polynomial algebra. We refer to [25], §8, for an introduction to
this topic. Interesting recent applications of such GIT problems are given in
[2]. Some of the representations occurring there are of interest in the setting of
coherent systems.

4 Moduli spaces

We fix a homogeneous representation % : GLr(C) −→ GL(V ), a positive inte-
ger s, line bundles L, M on X , and a stability parameter δ ∈ Q>0. The aim is
the definition of an appropriate notion of δ-semistability for coherent %-systems
and the sketch of a construction of moduli spaces. Particular care will be spent
on the construction of the Hitchin map. An alternative approach has already been
worked out in [34].
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4.1 Review of the construction of moduli spaces of pairs

In this part, we will discuss some elements of the construction of moduli spaces
of δ-semistable %-pairs which are useful or even necessary for the understanding
of the corresponding construction for moduli spaces of coherent systems. The
definitions and constructions for holomorphic %-triples are completely
analogous.

The moduli functors

Let S be a scheme of finite type over C. A family of %-pairs parameterized by S
is a tuple (ES , LS , ϕS) which consists of

• a vector bundle ES of rank r on S×X , such that there exists a line bundle
MS on S with det(ES) ∼= π⋆S(MS)⊗ π⋆X(M),

• a line bundle LS on S,

• and a homomorphism ϕS : O⊕s
S×X −→ ES,ϱ ⊗ π⋆S(LS)⊗ π⋆X(L).

We say that two families (E1
S , L

1
S , ϕ

1
S) and (E2

S , L
2
S , ϕ

2
S) of %-pairs parameter-

ized by S are isomorphic, if there exist isomorphisms

ψS : E
1
S −→ E2

S and λS : L
1
S −→ L2

S ,

such that
ϕ2
S = (ψS,ϱ ⊗ π⋆S(λS)⊗ idπ⋆

X(L)) ◦ ϕ1
S .

Given a scheme S of finite type over C, a family (ES , LS , ϕS) of %-pairs param-
eterized by S, and a closed point s ∈ S, the %-pair (ES,s, ϕS,s) is obtained by
restricting (ES , LS , ϕS) to {s}×X . We say that (ES , LS , ϕS) is δ-(semi)stable,
if (ES,s, ϕS,s) is δ-(semi)stable, for every closed point s ∈ S. (This might in-
volve defining δ-(semi)stability in the case that the residue field of s is not alge-
braically closed.) In this way, we obtain the moduli functors P δ-(s)s

X/M/L/ϱ which
assign to a scheme S of finite type over C the set of isomorphy classes of δ-
(semi)stable families of %-pairs parameterized by S. There is an obvious notion
of the pullback of a family of %-pairs via a morphism f : T −→ S which enables
us to define the map P δ-(s)s

X/M/L/ϱ(f) : P
δ-(s)s
X/M/L/ϱ(S) −→ P δ-(s)s

X/M/L/ϱ(T ).

The parameter space and the group action

Fix n ∈ N, set p := d + r · (n + 1 − g), d := deg(M), and choose a complex
vector space W of dimension p. There exist a quasi-projective scheme

P := PX/M/L/p/ϱ,
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line bundles LP, MP on P, as well as families

qP : W ⊗ π⋆X
(
OX(−n)

)
−→ EP

and
ϕP : O⊕s

P×X −→ EP,ϱ ⊗ π⋆P(LP)⊗ π⋆X(L)

on P×X , such that

• EP is a vector bundle of rank r on P × X with det(EP) ∼= π⋆P(MP) ⊗
π⋆X(M),

• qP is a surjective homomorphism,

• πP⋆(qP ⊗ idπ⋆
X(OX(n))) : W ⊗ OP −→ πP⋆(EP ⊗ π⋆X(OX(n)) is an

isomorphism.

We will write points of P in the form (q, ϕ). The (set-theoretic) map

A : GLs(C)×GL(W )×P −→ P (4.0.1)

(g, h, q, ϕ) 7−→
(
q ◦ (g−1 ⊗ idπ⋆

X(OX(n))), ϕ ◦ (h−1 ⊗ idOP×X
)
)

underlies a scheme theoretic group action. We let

B : GL(W )×P −→ P

be the restriction of A to GL(W )×P.
If we choose n large enough, there exist GL(W )-invariant open subsets Pδ-ss

and Pδ-s of P, such that,

• for every point s = (q : W ⊗ OX(−n) −→ E,ϕ) ∈ Pδ-(s)s, the %-pair
(E,ϕ) is δ-(semi)stable,

• for every scheme S, every δ-(semi)stable family (ES , LS , ϕS) of %-pairs
parameterized by S, and every point s ∈ S, there exist an open neigh-
borhood s ∈ U ⊂ S and a morphism κU : U −→ Pδ-(s)s, such that the
restriction of (ES , LS , ϕS) to U ×X is isomorphic to the pullback of the
family (EP, LP, ϕP) via κU × idX ,

• for every scheme S, and every pair κiS : S −→ P, i = 1, 2, of morphisms,
such that the pullback (E1

S , L
1
S , ϕ

1
S) of (EP, LP, ϕP) via κ1S × idX is

isomorphic to the pullback (E2
S , L

2
S , ϕ

2
S) of (EP, LP, ϕP) via κ2S × idX ,

there exists a morphism gS : S −→ GL(W ), such that κ2S = B◦(gS×κ1S).
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These properties imply that the (coarse) moduli spaces for the functorsP δ-ss
X/M/L/ϱ

and P δ-s
X/M/L/ϱ are given by the categorical quotients

Pδ
X/M/L/ϱ := Pδ-ss//GL(W ) and Pδ-s

X/M/L/ϱ := Pδ-s//GL(W ).

Remark 4.1 Since the center C⋆ · idW ⊂ GL(W ) acts trivially on Pδ-(s)s, it
suffices to prove the existence of the categorical quotients Pδ-ss//SL(W ) and
Pδ-s//SL(W ).

Construction of the Hitchin map

Now, assume that δ > ct, so that the notions of δ-semistability and asymptotic
semistability are characterized by Lemma 2.1. For every invariant I ∈ sym1

k,
we use the construction described after (2.3.1) to define a global section

I(ϕS) : OP×X −→ π⋆P(M
⊗l
P ⊗ L⊗k

P )⊗ π⋆X(M⊗l ⊗ L⊗k).

(Of course, we need to fix a suitable number k as described before.) We push
this forward to P and get

OP −→ H0(X,M⊗l ⊗ L⊗k)⊗M⊗l
P ⊗ L⊗k

P .

Choosing a basis I1, ..., Iu for sym1
k, the associated sections may be used to

define a morphism
χ̃P : Pδ-ss −→ h1

with
χ̃⋆
P

(
Oh1(1)

) ∼=M⊗l
P ⊗ L⊗k

P .

This map is invariant under the action of GL(W ). For this reason, it descends to
a morphism

χ1 : Pδ
X/M/L/ϱ −→ h1.

This is the Hitchin map.

4.2 The moduli problem for coherent systems

The moduli problem for coherent systems has already been discussed in our
previous paper [34]. The parameter space for coherent %-systems on which
the GIT construction was performed in that source is itself a GIT quotient of
the parameter space P for %-pairs from Section 4.1. This suggests that a con-
struction of the moduli space for coherent %-systems which is based on GIT
on the parameter space P should be possible. We will now try to explain this
alternative construction.
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Semistability

Let Γ be a finite dimensional complex vector space. A weighted flag in Γ is a
pair (Γ•, α•) which consists of a (not necessarily complete) flag

0 ( Γ1 ( · · · ( Γb ( Γ

in Γ and a vector β• = (β1, ..., βb) of positive rational numbers.

Remark 4.2 A weighted flag (Γ•, β•) determines a weighted filtration (F•, β•)
of F := Γ⊗OX with Fi := Γi ⊗OX , i = 1, ..., b. Clearly, not every weighted
filtration of F comes from a weighted flag of Γ.

Now, let (E,Γ) be a coherent %-system. We define

ϕΓ : F = Γ⊗OX −→ H0(X,Eϱ ⊗ L)⊗OX
ev−→ Eϱ ⊗ L.

For a coherent %-system (E,Γ), a weighted flag (Γ•, β•) in Γ, and a weighted
filtration (E•, α•) of E, we let (F•, β•) be the associated weighted filtration of
F = Γ⊗OX and set, using the definitions in Section 2.3,

µ
(
(Γ•, β•), (E•, α•); Γ

)
:= µ

(
(F•, β•), (E•, α•);ϕΓ

)
.

Let δ ∈ Q>0 be a stability parameter. We call a coherent %-system (E,Γ) δ-
(semi)stable, if the inequality

M(E•, α•) + δ · µ
(
(Γ•, β•), (E•, α•); Γ

)
(≥)0

holds true, for every pair ((Γ•, β•), (E•, α•)), consisting of a weighted flag
(Γ•, β•) in Γ and a weighted filtration (E•, α•) of E.

Remark 4.3 We may choose Γ• = 0 ( Γ and β• = (). In this case, the identity

µ
(
(F•, β•), (E•, α•); Γ

)
= µ

(
(E•, α•);ϕΓ

)
is satisfied, for every weighted filtration (E•, α•) of E. So, given a stability
parameter δ ∈ Q>0 and a δ-semistable coherent %-system (E,Γ), it follows that
the %-pair (E,ϕΓ) is δ-semistable, as well.

Now, fix the rank r, the degree d, and the dimension s. The main theorem
in [31] or Theorem 2.3.4.3 in [32] now implies that the family of isomorphy
classes of vector bundles E of rank r and degree d for which there exists an s-
dimensional subspace Γ ⊂ H0(X,Eϱ ⊗ L) and a stability parameter δ ∈ Q>0,
such that (E,Γ) is δ-semistable, is bounded.
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In view of the strong boundedness result that we have just mentioned, we expect
that the notion of δ-semistability for coherent %-systems (E,Γ) with rk(E) = r,
deg(E) = d, and dimC(Γ) = s stabilizes for large values of δ. We say that a
coherent %-system (E,Γ) is asymptotically (semi)stable, if

a) µ((F•, β•), (E•, α•);ϕΓ) ≥ 0 holds, for every pair ((Γ•, β•), (E•, α•)),
consisting of a weighted flag (Γ•, β•) in Γ and a weighted filtration (E•,
α•) of E,

b) for every pair ((Γ•, β•), (E•, α•)), consisting of a weighted flag (Γ•, β•)
in Γ and a weighted filtration (E•, α•) of E with µ((F•, β•), (E•, α•);
ϕΓ) = 0, one has M(E•, α•)(≥)0.

Problem 4.4 Given r, d, and s as before, is it true that there is a positive rational
number δ∞, such that, for δ ≥ δ∞, a coherent %-system (E,Γ) with rk(E) = r,
deg(E) = d, and dimC(Γ) = s is δ-(semi)stable if and only if it is asymptoti-
cally (semi)stable?

In view of the above boundedness result, the proof should proceed along the
lines of the proof of Proposition 2.3.6.5 in [32].

Remark 4.5 As before, a coherent %-system (E,Γ) defines a holomorphic %-
triple (F,E, ϕΓ), and, in the notation of Remark 2.2 and 2.13, a point ϕΓ,η ∈
Hom(Ks, VK). According to Remark 2.13, the first condition in the notion of
asymptotic semistability for the holomorphic %-triple (F,E, ϕΓ) requires that
ϕΓ,η is semistable with respect to the action of SLs(K) × SLr(K). In contrast,
Condition a) in the definition of asymptotic semistability for coherent systems re-
quires that ϕΓ,η satisfies the Hilbert–Mumford criterion for pairs (λ′, λ′′) where
λ′ : Gm(C) −→ SLs(C) ⊂ SLs(K) and λ′′ : Gm(K) −→ SLs(K) are one pa-
rameter subgroups. In order to understand this notion with the help of geometric
invariant theory, it will probably be helpful to restrict ϕΓ to a suitable open sub-
set U ⊂ X and choose appropriate trivializations in order to view ϕΓ|U as a
morphism U −→ Hom(Cs, V ) as in [30], Lemma 1.4.

The moduli functors

Let S be a scheme of finite type over C. A family of coherent %-systems param-
eterized by S is a family (ES , LS , ϕS) of %-pairs, such that

πS⋆(ϕS) : Γ⊗OS −→ πS⋆
(
ES,ϱ ⊗ π⋆X(L)

)
⊗ LS
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is universally injective, i.e., for every base change diagram

(4.5.1)

the homomorphism

πT⋆

(
(f×idX)⋆(ϕS)

)
: Γ⊗OT −→ πT⋆

(
(f×idX)⋆(ES,ϱ)⊗π⋆X(L)

)
⊗f⋆(LS)

is injective.

Remark 4.6 Let us explain the notion of universal injectivity from a different
viewpoint. First, we note that we may find an ample line bundle N on X , such
that πS⋆(ES,ϱ⊗π⋆X(N))⊗LS is locally free and commutes with base change. We
may also fix an injective homomorphism L −→ N . For a base change diagram
as (4.5.1), we get the commutative diagram ([8], Chapter III, Remark 9.3.1):

Here, we have set fX := f × idX . We point out the following:

• Since the projection T ×X −→ X is flat, the homomorphism π⋆T (L) −→
π⋆T (N) is injective. The sheaf ES,ϱ is locally free, so that the homomor-
phism f⋆X(ES,ϱ)⊗ π⋆X(L) −→ f⋆X(ES,ϱ)⊗ π⋆X(N) is injective. It follows
that the second homomorphism in the bottom row of the above diagram is
always injective. This means that the homomorphism πS⋆(ϕS) is univer-
sally injective if and only if the corresponding homomorphism

ψS : Γ⊗OS −→ πS⋆
(
ES,ϱ ⊗ π⋆X(N)

)
⊗ LS

is universally injective.

• Assume that S is reduced. Using the outer square in the above diagram
and the fact that the leftmost and the rightmost vertical homomorphism
are isomorphisms, it follows that ψS is universally injective if and only if
Γ⊗OS is a subbundle of πS⋆(ES,ϱ ⊗ π⋆X(N))⊗ LS .
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• Suppose that S is reduced and (ES , LS , ϕS) is an arbitrary family of %-
pairs paramterized by S. As before, let ψS : Γ ⊗ OS −→ πS⋆(ES,ϱ ⊗
π⋆X(N)) ⊗ LS be the induced homomorphism. Then, there is the open
subscheme U of points s ∈ S, for which ψS|{s}×X has maximal rank. The
foregoing discussion shows that, for the family (EU , LU , ϕU ) of %-pairs
that is obtained by restricting (ES , LS , ϕS) to U ×X , the homomorphism
πU⋆(ϕU ) is universally injective.

Two families (E1
S , L

1
S , ϕ

1
S) and (E2

S , L
2
S , ϕ

2
S) parameterized by the scheme S are

isomorphic, if there exist an isomorphism ψS : E
1
S −→ E2

S and an isomorphism
λS ∈ Γ(S,GLs(OS)), such that

ϕ2
S = (ψS,ϱ ⊗ id π⋆

X(L)) ◦ ϕ1
S ◦ λ−1

S .

Fix δ ∈ Q>0. It is now clear how to define the moduli functors Cδ-(s)s
X/M/L/ϱ of

δ-(semi)stable coherent %-systems.

The construction of the moduli spaces

We start with the parameter scheme P from Section 4.1. It is reduced. According
to Remark 4.6, there is an open subscheme C ⊂ P that is characterized by the
property that, for the universal family (EC, LC, ϕC) that is obtained by restricting
the universal family (EP, LP, ϕP) to C × X , the associated homomorphism
πC⋆(ϕC) is universally injective. The action defined in (4.0.1) induces an action

GLs(C)×GL(W )× C −→ C.

Using the techniques from the paper [6], it is now possible to carry out the pro-
gram outlined for %-pairs in Section 4.1 also for coherent %-systems, i.e., we find
the (GLs(C)×GL(W ))-invariant open subsets Cδ-ss and Cδ-s that parameterize
the coherent %-systems that are δ-semistable and δ-stable, and the categorical
quotients

Cδ
X/M/L/ϱ := Cδ-ss//

(
GLs(C)×GL(W )

)
and

Cδ-s
X/M/L/ϱ := Cδ-s//

(
GLs(C)×GL(W )

)
do exist and constitute the moduli spaces for the functors Cδ-ss and Cδ-s,
respectively.
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The Hitchin map

According to [23], Proposition 1.3.1, the moduli space Cδ
X/M/L/ϱ may be con-

structed as a GLs(C)-quotient of

Pδ
X/M/L/ϱ = Pδ-ss//GL(W ).

By the same result, GLs(C) acts on sym1
k and, thus, on h1 (2.3.1). The Hitchin

map
χ1 : Pδ

X/M/L/ϱ −→ h1 (4.6.1)

is GLs(C)-equivariant.
Now, we define

h3 := h1//GLs(C). (4.6.2)

Let us be a bit more precise. The center of GLs(C) acts trivially on h1. So, as
before,

h1//GLs(C) = h1//SLs(C).

The GLs(C)-action and, so, also the SLs(C)-action on h1 is naturally linearized
in the line bundle Oh1(1). The above quotient is then to be understood as the
quotient constructed by Mumford for the linearized SLs(C)-action. Note that, if
the center of GLs(C) acts with non-zero weight on

s1 := sym1
k ⊗H0(X,M⊗l ⊗ L⊗k),

then there are no points which are GLs(C)-semistable in the sense of Mumford.
This is why we are working with the action of SLs(C).

Remark 4.7 As a representation of GLs(C), s1 is isomorphic to the direct sum
of dimC(H

0(X,M⊗l ⊗ L⊗k)) copies of sym1
k. So, if one knows sym1

k as a
GLs(C)-module, then one may use the techniques described, e.g., in [36] in
order to determine the Hitchin space h3. Examples were presented in Section 3.

We expect that (4.6.1) induces a Hitchin map on Cδ
X/M/L/ϱ for suitable values of

δ. So, we formulate the following.

Problem 4.8 Let hss
1 ⊂ h1 be the SLs(C)-invariant open subset of points that

are SLs(C)-semistable in the sense of Mumford, and let

H : Pδ-ss −→ PX/M/L/ϱ
h1−→ h1

be the quotient morphism followed by the Hitchin map. Is it true that, for δ � 0,

Cδ ⊂ H−1(hss
1 )?
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Even if the answer to the above problem were negative, it would make sense
to study the Hitchin map and the Hitchin space. Indeed, in order to construct
the moduli space Cδ as a GIT quotient of Pδ-ss, we have used a linearization
of the group action in some ample line bundle L1. Furthermore, the pullback
L2 of Oh1(1) via the equivariant morphism H is also linearized. Relative geo-
metric invariant theory ([27], Theorem 2.1, [33], Proposition 1.2) shows that,
for large values of c ∈ N, the set C◦ of points that are semistable with re-
spect to the linearization in L1 ⊗ L⊗c

2 is contained in H−1(hss
1 ). The quo-

tient C◦ := C◦//(GLs(C) × GL(W )) will then be endowed with a projective
Hitchin map

χ3 : C◦ −→ h3.

5 Examples

We will discuss some very basic examples which mainly serve to illustrate prop-
erties of the Hitchin map. They pick up the topics of Section 2.3. We will
compare them with the corresponding examples of holomorphic triples.

5.1 Symmetric tensors

We let X be a smooth projective curve and L a line bundle on X . Consider
a vector bundle E of rank two and a subspace Γ ⊂ H0(X, Sym2(E∨) ⊗ L)
of dimension two. The test objects are pairs, consisting of a one dimensional
subspace Λ ⊂ Γ together with a positive rational number ν and a sub line bun-
dle N ⊂ E together with a positive rational number µ, corresponding to the
weighted flag (0 ( Λ ( Γ, (ν)) and the weighted filtration (0 ( N ( E, (µ)),
respectively. We use the computations from Page 18f for the homomorphism
ϕΓ = (β1, β2) : O⊕2

X −→ Sym2(E∨)⊗ L. For Condition a) in the definition of
asymptotic (semi)stability, we use the discussion leading to Proposition 3.7.

Remark 5.1 There is an important point to observe when drawing the conclu-
sions from the computations. A homomorphism β : Sym2(E) −→ L is given by
a symmetric (2× 2)-matrix

mβ =

(
s1 s2
s2 s3

)
with s1, s2, s3 ∈ H0(X,L). Suppose that s1, s2 ∈ H0(X,L) are linearly inde-
pendent sections and choose

mβ1 =

(
s1 0
0 s1

)
and mβ2 =

(
0 s2
s2 0

)
.
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For λ1, λ2 ∈ C, not both zero, the discriminant of λ1 ·mβ1 + λ2 ·mβ2 is

λ21 · s21 − λ22 · s22 6≡ 0.

Therefore, every element in Γ := 〈β1, β2 〉 has generic rank two, in contrast to
the observation in the proof of Proposition 3.7.

The first property that we need is that β1 and β2 are linearly independent over
C. This is ensured by the fact that Γ is a two-dimensional subspace. The second
condition requires that there is no sub line bundle N ⊂ E which is isotropic
for both β1 and β2, i.e., isotropic for all β ∈ Γ, and occurs as the radical of an
element β ∈ Γ \ {0}. Finally, we point out that the one parameter subgroups
with weight zero described in Remark 3.9 are associated with an element q ∈
〈 q1, q2 〉 \ {0} and the radical Λ ⊂ C2 of q. In addition, the case µ = 0 may
occur here and corresponds to a sub line bundle N ⊂ E which is isotropic for
all β ∈ Γ. Our discussion yields the following criterion.

Lemma 5.2 The coherent system (E,Γ) is asymptotically (semi)stable if and
only if

a) there is no sub line bundle N ⊂ E which is isotropic for all β ∈ Γ and
agrees with the radical of an element β ∈ Γ \ {0}, and

b) for every sub line bundle N ⊂ E which is either isotropic for all β ∈ Γ or
occurs as the radical of one element β ∈ Γ \ {0}, the inequality

deg(N)(≤)µ(E) =
deg(E)

2

is satisfied.

Example 5.3 In the example presented in Remark 5.1, the radical of every el-
ement in Γ is trivial and there is no sub line bundle which is isotropic for all
β ∈ Γ. This means that (E,Γ) is asymptotically stable.

Remark 5.4 i) The Hitchin space h1 for pairs(E,ϕ : O⊕2
X → Sym2(E∨)⊗ L)

is
P
(
H0(X, (M∨)⊗4 ⊗ L⊗2)⊕3

)
.

The three summands correspond to the invariants ∆1, ∆2, and Γ, respectively.
ii) Let (E,Γ) be a coherent system which fails to meet Condition a) in Lemma
5.2. Assume that the sub line bundleN ⊂ E is the radical of β1 and isotropic for
β2. As usual, let K = C(X) be the function field ofX . We choose a trivialization
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E|{η} ∼= K2 of E at the generic point of X and apply a suitable transformation
from SL2(K), such that, up to a factor in K⋆, we get

mβ1 =

(
1 0
0 0

)
and mβ2 =

(
1 ?
? 0

)
.

If ? is zero, then the pair (E,ϕΓ : O⊕2
X −→ Sym2(E∨) ⊗ L) is not generically

semistable (see Remark 2.2), and the invariants ∆1, ∆2, and Γ all vanish at
(E,ϕΓ), so that the Hitchin map χ1 is not defined at (E,ϕΓ). If ? is different
from zero, then the Hitchin map χ1 is defined at (E,ϕΓ) and lies in the summand
corresponding to ∆1. Using the arguments from Section 3, it is readily checked
that these elements are nullforms for the action of SL2(C). So, the Hitchin map
χ3 is not defined at (E,Γ).

When looking at holomorphic triples ϕ : F −→ Sym2(E∨) ⊗ L, the results of
the section on symmetric tensors in Section 3 give the notion of generic semista-
bility. By Proposition 3.4, the invariant ring is generated by a single invari-
ant of degree four. So, according to (2.13.1), the base for the Hitchin map for
holomorphic triples (F,E, ϕ) with rk(F ) = rk(E) = 2, det(E) ∼= M , and
det(F ) ∼= OX is

h2 = P
(
H0(X, (M∨)⊗8 ⊗ L⊗4)

)
.

In contrast, the Hitchin space for coherent systems (E,Γ) is the SL2(C)-quotient
of

h1 = P
(
Sym2(C2)⊗H0(X, (M∨)⊗4 ⊗ L⊗2)

)
.

The following example illustrates the difference between the notions of asymp-
totic semistability for the two species of objects.

Example 5.5 Let us choose X = P1, L = OX(1), and E = O⊕2
X . We let

(s1, s2) be the usual basis of H0(X,L). Pick

mβ1 =

(
s1 s1
s1 0

)
and mβ2 =

(
s2 s2
s2 0

)
.

The holomorphic triple given by these data is not generically semistable, but the
coherent system (E,Γ) is asymptotically semistable. We compute

∆1(β1, β2) = −s21, ∆2(β1, β2) = −s22, and Γ(β1, β2) = −s1 · s2.

Using (s21, s
2
2, s1 ·s2) as a basis ofH0(X,L⊗2) and identifying (∆1,∆2,Γ) with

the basis (e21, e
2
2, e1 · e2) for Sym2(C2), as in the proof of Proposition 3.4, we

see that we have

χ1

(
[E,ϕΓ]

)
=

[
(e21, 0, 0), (0, e

2
2, 0), (0, 0, e1 · e2)

]
∈ h1.
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Since [e1 · e2] ∈ P (Sym2(C2)) is semistable for the action of SL2(C), the point
χ1([E,ϕΓ]) is semistable for the action of SL2(C), and the Hitchin map χ3 is
defined at [E,Γ].

5.2 Classical coherent systems

Let X be a smooth projective curve and L a line bundle on X . Here, we look
at pairs (E,Γ) which consist of a holomorphic vector bundle E on X and a
subspace Γ ⊂ H0(X,E ⊗ L).

Remark 5.6 Replacing E by E ⊗ L, we may actually assume L = OX . The
reader may check that the condition of δ-(semi)stability is not affected by this
manipulation. In this way, we may comply with the usual conventions in the
literature. We will not make use of this in the example below to keep the notation
closer to the general setting.

The condition of (semi)stability introduced by Raghavendra and Vishwanath
[26] says that, for δ ∈ Q>0, a coherent system (E,Γ) is δ-(semi)stable, if, for
every subbundle 0 ( G ( E and every subspace Γ′ ⊂ Γ ∩H0(X,G ⊗ L), the
inequality

deg(G) + δ · dimC(Γ
′)

rk(G)
(≤)

deg(E) + δ · dimC(Γ)

rk(E)

is satisfied. We checked that the general notion of δ-(semi)stability for coherent
%-pairs that we defined in [34], Section 1.4, specializes to this one, for % =
id: GLr(C) −→ GL(Cr) (see [34], Example 1.4.1). We also note that, in this
special case, there is no restriction on the stability parameter in the construction
from [34].

Problem 5.7 Does the notion of δ-semistability for coherent %-systems defined
in Section 4.2 specialize to the above condition for % = id?

This will probably follow with the help of the arguments used in [29], Section 3.
In the sequel, we will work relative to X = P1 and choose L := OX(1).

Pick a basis (s1, s2) for H0(X,L). We look at the surjection ϕ : O⊕3
X −→ E,

E := O⊕2
X , given by the matrix

m :=

(
s1 0 s1 + s2
0 s2 s1 + s2

)
.

The three minors are s1 · s2, s21 + s1 · s2, and s1 · s2 + s22. They form a basis
for H0(X,L⊗2). (The fact that they don’t have a common zero shows that ϕ
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is surjective.) Define Γ ⊂ H0(X,E ⊗ L) as the subspace that is spanned by
the columns of the matrix m. We claim that (E,Γ) is δ-stable, for all δ ∈
Q>0. This amounts to the fact that there is no sub line bundle N ⊂ E with
dimC(ΓN ) = 2, ΓN := Γ ∩H0(X,N ⊗ L). For such a line bundle, we would
find the commutative diagram

The snake lemma implies that (E/N)⊗ L is globally generated by a single
section, i.e., (E/N)⊗L ∼= OX . The fact that (E/N)⊗L is a quotient of E⊗L
implies that (E/N)⊗ L ∼= OX(k) with k ≥ 1. This is a contradiction.

Remark 5.8 This example and more general versions can be found in [4],
Section 5.4, and [18], Example 6.6.

The Hitchin space is the SL3(C)-quotient of

P
(
V ∨ ⊗H0(X,L)

) ∼= P
(
(V ∨)⊕3

)
, V := C3,

i.e.,

h3
∼= ?.

The Hitchin map χ3 is defined at the isomorphy class of (E,Γ). According to
[18], Example 6.6, the moduli space contains just [E,Γ]. So, the Hitchin map is,
in fact, an isomorphism.

Remark 5.9 i) If we replace OX(1) by OX(k) with k ≥ 2, we get positive
dimensional Hitchin spaces, by Theorem 3.11. Using an embedding OX(1) −→
OX(k), we can extend the above example. We will still get a stable coherent
system. In that case, Γ⊗OX −→ E ⊗OX(k) is only generically surjective.

ii) Let K ∼= C(t) be the function field of X . There are no points in the pro-
jective space P (Hom(K3,K2)) which are semistable with respect to the action
of SL3(K) × SL2(K). This means that for fixed degrees e and d and δ � 0,
there are no δ-semistable holomorphic triples ϕ : F −→ E with rk(F ) =
3, deg(F ) = e, rk(E) = 2, and deg(E) = 2 (compare Lemma 2.12 and
Remark 2.13).
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