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Abstract

Mathematical models of pathogen transmission in age-structured host
populations, can be used to design or evaluate vaccination programs. For
reliable results, their forces or hazard rates of infection (FOI) must be for-
mulated correctly and the requisite contact rates and probabilities of infec-
tion on contact estimated from suitable observations. Elsewhere, we have
described methods for calculating the probabilities of infection on contact
from the contact rates and FOI. Here, we present methods for estimating
the FOI from cross-sectional serological surveys or disease surveillance
in populations with or without concurrent vaccination. We consider both
continuous and discrete age, and present estimates of the FOI for vaccine-
preventable diseases that confer temporary or permanent immunity.

Keywords: epidemiological model; force of infection; parameter estimation;
cross-sectional observations; serology data.

Resumen

Los modelos matemáticos de transmisión de patógenos en poblaciones
de huéspedes estructuradas por edad pueden usarse para diseñar o evaluar
programas de vacunación. Para obtener resultados confiables, sus fuerzas
o tasas de riesgo de infección (FOI) deben formularse correctamente y las
tasas de contacto requeridas y las probabilidades de infección en contacto
deben estimarse a partir de observaciones adecuadas. En otros lugares,
hemos descrito métodos para calcular las probabilidades de infección por
contacto a partir de las tasas de contacto y FOI. Aquí, presentamos méto-
dos para estimar el FOI a partir de encuestas serológicas transversales o
vigilancia de enfermedades en poblaciones con o sin vacunación concu-
rrente. Consideramos tanto la edad continua como la discreta, y presenta-
mos estimaciones del FOI para enfermedades prevenibles por vacunación
que confieren inmunidad temporal o permanente.

Palabras clave: modelo epidemiológico; fuerza de infección; estimación de
parámetros; observaciones transversales; datos serológicos.

Mathematics Subject Classification: 34C99, 35Q92, 92B05.
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ESTIMATING AGE-SPECIFIC HAZARD RATES OF INFECTION 125

1 Introduction

Vaccine-preventable diseases such as measles and pertussis have age-specific
vaccination programs. Epidemiological models can be used to identify target
age groups (e.g., Hao et al. 2019, [6]). For such models to generate reliable
evaluations of alternative strategies, they must have reasonable parameter esti-
mates. Among model parameters, the most important and difficult to estimate is
the probability of infection per contact, usually denoted by β, which is the main
component of the FOI.

Consider an age-structured SIR model with continuous age and assume that
the system is at the endemic steady-state. Let S(α) denote the density of suscep-
tible people aged α. Denote the number of new infections by λ(α)S(α), where
λ(α) is the FOI given by

λ(α) = a(α)β(α)

∫ ∞

0
c(α, u)

I(u)

N(u)
du. (1)

In equation (1), a(α) denotes the per capita contact rate of individuals aged α,
β(α) is the probability of infection per contact among susceptible ones aged α,
c(α, u) describes mixing between susceptible and infectious people aged α and
u, respectively, and I(u) and N(u) denote the densities of infectious individuals
and total population aged u, respectively. Their ratio is the probability that a
randomly encountered person aged u is infectious.

If the population can be divided into n age groups such that the charac-
teristics of individuals within each are the same, then Hethcote (2000) showed
that models comprising partial differential equations (PDEs) can be reduced to
systems of ordinary differential equations (ODEs) with n discrete age groups in-
dexed by i = 1, 2, . . . , n. In this case, the number of new infections in age group
i is λiSi, where Si denotes the number of susceptible individuals in group i and
λi is the FOI for that group (Section 2.2):

λi = aiβi

n∑
j=1

cij
Ij
Nj

, i = 1, 2, . . . , n. (2)

The parameter values for the contact rates ai and proportions cij can be es-
timated from observed contacts between age-groups (see [5, 2]). Using esti-
mates of λi and Ij/Nj , we can solve the equations in (2) for the probabilities of
transmission βi.
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126 Z. FENG — J.W. GLASSER

2 Linking the FOI to observations

Serological observations may include individuals with immunity induced by vac-
cination as well as natural infection. As these sources generally are indistin-
guishable, additional information about vaccination programs is needed to esti-
mate the FOI from post-vaccination serological observations.

2.1 Continuous age

Let α denote chronological age, F (α) denote the cumulative probability of being
infected at age α, and λ(α) denote the per capita infection rate for susceptible
individuals aged α. The probability that a person remains susceptible from birth
to age α is e−

∫ α
0 λ(s)ds, so

F (α) = 1− e−
∫ α
0 λ(s)ds. (3)

In the absence of vaccination, F (α) can be obtained directly from serologi-
cal observations. For example, Figure 1A illustrates F (α) fitted to observa-
tions (represented by the dots) for varicella from the third National Health and
Nutrition Examination Survey (https://www.cdc.gov/nchs/nhanes/
nh3data.htm), conducted in the United States during the period 1988-1995,
via the FindFit function in Mathematica. A vaccine against varicella was not
licensed in the US until 1995. Using the estimated function F (α) and relation
(3), we can obtain the FOI as follows:

λ(α) = − d

dα
ln
[
1− F (α)

]
. (4)

A plot of λ(α) is illustrated in Figure 1B.
If vaccination at birth (or soon after) is considered, let q(α) denote the frac-

tion of individuals aged αwho were not immunized at birth. Then the expression
for F in (3) becomes

F (α) = 1− q(α)e−
∫ α
0 λ(s)ds, (5)

and the corresponding FOI is given by

λ(α) =
d

dα
ln

q(α)

1− F (α)
. (6)
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Figure 1: A: Serological observations (dotted) for varicella (from NHANES
III, conducted from 1988-1995) and the fitted curve (solid) for F (α).
B: The FOI λ(a) calculated from the fitted F (α) in A and (4).

2.2 Discrete age

If the population can be divided into n subgroups by 0=α0<α1< · · ·<αn=∞,
such that parameter values within each group [ai−1, ai) are constant; that is,

a(α) = ai, β(α) = βi, etc. αi−1 ≤ α < αi, i = 1, 2, . . . , n,

the numbers of individuals in the respective epidemiological classes in age group
i, αi−1 ≤ α < αi, are

Si=

∫ αi

αi−1

S(α)dα, Ii=

∫ αi

αi−1

I(α)dα, Ni=

∫ αi

αi−1

N(α)dα, i=1, 2, . . . , n.
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128 Z. FENG — J.W. GLASSER

If the mixing function c(α, u) is separable and properly defined (see [4]), it can
be replaced by discrete mixing constants cij , representing the proportion of the
contacts of individuals in group i that is with individuals in group j. In this case,
the expression in (1) can be written as

λ(α) = λi
.
= aiβi

n∑
j=1

cij
Ii
Nj

, for αi−1 ≤ α < αi, i = 1, 2, . . . , n, (7)

2.2.1 No vaccination

Let Wi = αi − αi−1 denote the width of age group i. Note that, for α = αi,

e−
∫ α
0 λ(s)ds = e

−
∑i
k=1

∫ αk
αk−1

λ(s)ds
= e−

∑i
k=1 λkWk . (8)

Let Si denote the proportion of sero-positive individuals in age group i,
i = 1, 2, . . . , n. The probability of not having been infected up to age αi is

e−
∑i
k=1 λkWk , i = 1, 2, . . . , n.

From (8), the probability of being infected at age αi is

Si = 1− e−
∑i
k=1 λkWk , i = 1, 2, . . . , n, (9)

from which we have
i∑

k=1

λkWk = − ln
(
1− Si

)
.

It follows that λ1 = −
[
ln(1− S1)

]
/W1 and

λi =
1

Wi

[
i∑

k=1

λkWk −
i−1∑
k=1

λkWk

]
,

=
1

Wi

[
ln

(
1− Si−1

1− Si

)]
, i = 2, 3, . . . , n.

(10)
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Figure 2 compares the curve in Figure 1B and the λi values calculated using
(10) in which the Si are generated from the function F (α) in Figure 1A.

Figure 2: Comparison between the curve in Figure 1B and the λi values (the dots) cal-
culated using (10) in which Si are generated from the function F (α) in Fig-
ure 1A.

2.2.2 Vaccination at birth

Let qi denote the proportion of individuals who are not immune due to vaccina-
tion at birth (group 1), i = 1, 2, . . . , n. Note that the probability of having been
neither vaccinated nor infected before age αi is

qie
−

∑i
k=1 λkWk , i = 1, 2, . . . , n.

Thus, the probability of being sero-positive at age αi is

Si = 1− qie
−

∑i
k=1 λkWk , i = 1, 2, . . . , n, (11)

from which we have that

i∑
k=1

λkWk = ln

(
qi

1− Si

)
, i = 1, 2, . . . , n.
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Then,

λ1 =
1

W1

[
ln

(
q1

1− S1

)]
,

and

λi =
1

Wi

[
i∑

k=1

λkWk −
i−1∑
k=1

λkWk

]
,

=
1

Wi

[
ln

(
qi

1− Si

)
− ln

(
qi−1

1− Si−1

)]
,

=
1

Wi

[
ln

(
1− Si−1

1− Si
· qi
qi−1

)]
, i = 2, 3, . . . , n.

(12)

2.2.3 Supplementary immunization

Let σi denote the vaccination (immunization) rate of group i due to a supple-
mentary immunization program, i = 1, 2, . . . , n. Then the probability of neither
being vaccinated nor infected before age αi is

qie
−

∑i
k=1(λk+σk)Wk , i = 1, 2, . . . , n,

and the probability of being sero-positive at age αi is

Si = 1− qie
−

∑i
k=1(λk+σk)Wk , i = 1, 2, . . . , n. (13)

From equation (13), we have

i∑
k=1

(λk + σk)Wk = ln

(
qi

1− Si

)
,

from which we obtain

λ1 =
1

W1

[
ln

(
q1

1− S1

)]
− σ1,

and

λi =
1

Wi

[
i∑

k=1

(λk + σk)Wk −
i−1∑
k=1

(λk + σk)Wk

]
− σi,

=
1

Wi

[
ln

(
qi

1− Si

)
− ln

(
qi−1

1− Si−1

)]
− σi,

=
1

Wi

[
ln

(
1− Si−1

1− Si
· qi
qi−1

)]
− σi, i = 2, 3, . . . , n.

(14)
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3 Estimating the FOI

3.1 Estimating the FOI from disease surveillance

Consider a cohort born at time t of size N0(t) and immunization (uptake ×
efficacy) proportion p0(t). For this cohort, introduce the following notation:

Ii(t) is the number of new infections in age group i from disease surveillance
(adjusted for estimated under-reporting); i.e., people aged [ai−1, ai) who
were infected during the period t+ ai−1 to t+ ai (see Figure 3);

λi(t) is the force or hazard rate of infection for people aged [ai−1, ai);

p0(t) is the proportion of the N0(t) people aged [0, a1) at time t that is immu-
nized.

Figure 3: Depiction of group-specific surveillance (Ii) and the FOI (λi) for a cohort
born (i.e., aged 0) at time t with proportion p0(t) of N0(t) immunized.
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132 Z. FENG — J.W. GLASSER

Then, within this cohort, the total number of infected people aged a < ai−1

at time t + ai−1 is
∑i−1

k=1 Ik(t), and the number of susceptible people in age
group i− 1 at time t+ ai−1 is

N0(t)
[
1− p0(t)

]
−

i−1∑
k=1

Ik(t).

Let Wi = ai − ai−1. Then,

λi(t)

(
N0(t) [1− p0(t)]−

i−1∑
k=1

Ik(t)

)
Wi = Ii(t),

from which we obtain the FOI for age group i:

λi(t) =
Ii(t)(

N0(t) [1− p0(t)]−
∑i−1

k=1 Ik(t)
)
Wi

, i = 1, 2, . . . , n. (15)

Figure 4 shows results presented in [6] illustrating use of equation (15) to esti-
mate the FOI λi based on measles surveillance data (Ii) in China during 2006
and 2014.

Figure 4: FOI among persons susceptible to measles by age in China during 2006 (A)
and 2014 (B) estimated via equation (15). Source: [6].
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3.2 Estimating the FOI from serology

Given proportions with antibodies from a cross-sectional serological survey at
time t (i.e., Si(t) are available), the FOI may be estimated independent of disease
surveillance. Note that we can write cumulative infections at ages ai and ai−1 at
time t as [

Si − pi
]
Ni and

[
Si−1 − pi−1

]
Ni−1, i > 1,

where pi is the proportion of people in age group i who were immunized at birth
(i.e., at time t−ai), andNi is the number of people in age groups i (see Figure 5).
Then

λ1 =
(S1 − p1)N1

(1− p0)N0
,

and

λi =

[
Si − pi

]
Ni −

[
Si−1 − pi−1

]
Ni−1

(1− Si−1)Ni−1
, i = 2, 3, . . . , n.

Figure 5: Depiction of the approach using group-specific cross-sectional serological ob-
servations at time t. Si(t) denotes the proportion of sero-positive people in
age group i at time t, which includes those who were immunized at time
t − ai with proportion pi of a population Ni and infected with FOI λi in
(1− Si−1)Ni−1.
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4 Estimating the FOI when immunity wanes

One difference between viral and bacterial pathogens is that infections with the
former usually do and latter do not generate permanent immunity; and thus,
multiple infections in a lifetime may be possible. The example in this section
is from [3], who used antibody concentrations to pertussis toxin above 100 or
150 IU per ml in Sweden to estimate the FOI. The formulas for probabilities of
having had one, two, and three infections by age α are derived in [3] and [8].

Let F (α) denote the cumulative probability of infection at age α and let λ(α)
denote the hazard rate of infection at age α. If only one infection is possible in a
lifetime, then

F (α) = q
(
1− e

∫ α
0 λ(u)du

)
+ p

∫ α

0
ω(s)e−ωs

(
1− e

∫ α
s λ(u)du

)
ds, (16)

where p is the proportion of infants immune by virtue of passively acquired
maternal antibodies, q = 1 − p is the proportion of infants susceptible at birth,
and ω(r) is the rate of immunity waning at age r. When p = 0, equation (16) is
the same as that given in [1].

In [1] is assumed that the FOI had the following functional form:

λ(α) = (aα− c) e−ba + d, (17)

where a, b, c and d are constants. This assumption is useful where observations
are few or highly variable.

In [3], Feng, et al. fit equation (16) with λ(α) given by (17) to propor-
tions of preschool children with antibodies to pertussis toxin greater than 10 IU
per ml to estimate the constants in λ(α). The result is illustrated in Figure 6,
which shows the FOI in two cases: (i) q = 1 and (ii) q = 0.483. The esti-
mated parameter values for the FOI in (17) are (i) a = 0.712, b = 1, c = 0.082,
d = 0.002) (the dashed curve in (b)), and (ii) for the case with maternal
antibodies, p = 0.483, a = 0.884, b = 1, c = 0.291, d = 0.002 (the solid
curve in (b)).
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Figure 6: Fits of equation (16) with q = 1 (dashed curve) and q = 0.483 (solid curve) to
age specific proportions of preschool children with anti-PT titers ≥ 10 EU/ml.
Source: [3].

Suppose that people can be infected twice in a lifetime. Introduce the fol-
lowing notation:

PS1(α) is the probability of remaining susceptible from birth to at age α, given by
e−

∫ α
0 λ(u)du;

PS2(τ) is the probability of remaining susceptible τ time units after recovering
from the first infection;

PIi(τ) is the probability of remaining infected τ time units after the ith infection
(i = 1, 2);

PRi(τ) is the probability of remaining immune τ time units after recovery from
the ith infection (i = 1, 2). PR2(τ) = 1 if only two infections in a lifetime.

Assume that people were first infected at age u, recovered (and became im-
mune) at age τ > u, lost immunity (and became susceptible again) at age σ,
were re-infected at age θ, and remain infected at age α (see Figure 7).
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136 Z. FENG — J.W. GLASSER

Then the cumulative probability of infection at age α is

F (α) = I1(α) + I2(α), (18)

where

I1(α) =

∫ α

0
λ(u)e−

∫ u
0 λ(r)drPI1(α− u)du, (19)

and

I2(α) =

∫ α

0

∫ θ

0

∫ σ

0

∫ τ

0

[
−P ′

S1
(u)
] [
−P ′

I1(τ − u)
] [
−P ′

R1
(σ − τ)

]
×
[
−P ′

S2
(θ − σ)

]
PI2(α− θ)dudτdσdθ,

(20)

represent probabilities of first and second infection at age α, respectively.

Figure 7: Diagram showing the order of events for 2 infections.

Consider the special case when the sojourns in Ii and R1 stages are expo-
nentially distributed; i.e.,

PIi(τ) = e−γτ , PR1(τ) = e−ωτ ,

where 1/γ and 1/ω are mean periods of infection and immunity. Assume that
the FOI for the second infection is ρλ(α) where 0 < ρ < 1 indicates a possible
diminution in the rate of re-infection. Then the expression for I2(a) in (20)
becomes

I2(α) =

∫ α

0

∫ θ

0

∫ σ

0

∫ τ

0
λ(u)e−

∫ u
0 λ(r)drγe−γ(τ−u)ωe−ω(σ−τ)

× ρλ(θ)e−
∫ θ
σ ρλ(r)dre−γ(α−θ)dudτdσdθ.

(21)
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Figure 8 shows the result of fitting equations (19) and (21) to age-specific
proportions of persons whose sera contain antibodies to pertussis toxin above
100 EU/ml (A and B) and 150 EU/ml (C and D). The estimated parameter val-
ues for the FOI are a = 0.314, b = 0.13, c = −0.225, d = 0.001 (in B) and
a = 0.301, b = 0.149, c = −0.16, d = 0.001 (in D).

Figure 8: Age-specific proportions of sera containing antibodies to pertussis toxin
above 100 EU/ml (A and B) and above 150 EU/ml (C and D) and fitted equa-
tions (19) and (21). The parameters for the corresponding FOI λi are (B)
a = 0.314, b = 0.13, c = −0.225, d = 0.001, and (D) a = 0.301,
b = 0.149, c = −0.16, d = 0.001. Source: [3].

In [8] Wang, et al. considered the case of three infectious in a lifetime.
Let z1(α) denote the probability that a person born susceptible is first infected at
age α, z2(α) denote the probability that a person aged α either was
born susceptible and infected a second time, or born with maternal antibodies
and first infected after losing maternal immunity, z3(α) denote the
probability that a person aged α either was born with maternal antibodies and had
a second infection or was born susceptible and had a third infection.
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Then the cumulative probability of infection at age α is given by

F (α) = z1(α) + z2(α) + z3(α),

where

z1(α) = q

∫ α

0
λ(u)e−

∫ u
0 λ(r)dre−γ(α−u)du,

z2(α) = p

∫ α

0

∫ θ

0

[
ωe−ωu

] [
ρλ(θ)e−

∫ θ
u ρλ(r)dr

] [
e−γ(α−θ)

]
dudθ

+q

∫ α

0

∫ θ

0

∫ σ

0

∫ τ

0
λ(u)e−

∫ u
0 λ(r)drγe−γ(τ−u)ωe−ω(σ−τ)

×ρλ(θ)e−
∫ θ
σ ρλ(r)dre−γ(α−θ)dudτdσdθ,

and

z3(α) = p

∫ α

0

∫ θ

0

∫ σ

0

∫ τ

0

∫ ζ

0

[
ωe−ωu

] [
ρλ(ζ)e−

∫ ζ
u ρλ(r)dr

] [
γe−γ(τ−ζ)

]
×
[
ωe−ω(σ−τ)

] [
ρλ(θ)e−

∫ θ
σ ρλ(r)dr

] [
e−γ(α−θ)

]
dudζdτdσdθ

+ q

∫ α

0

∫ θ

0

∫ σ

0

∫ τ

0

∫ ζ

0

∫ ψ

0

∫ χ

0

[
λ(u)e−

∫ u
0 λ(r)dr

][
γe−γ(χ−u)

][
ωe−ω(ψ−χ)

]
×
[
ρλ(ζ)e−

∫ ζ
ψ ρλ(r)dr

] [
γe−γ(τ−ζ)

] [
ωe−ω(σ−τ)

] [
ρλ(θ)e−

∫ θ
σ ρλ(r)dr

]
×
[
e−γ(α−θ)

]
dudχdψdζdτdσdθ.

The numerical simulations of [8] suggest that a model with two infections
suffices (although some questions may require more than two). Figure 9 is based
on the reduction of the 3-infection PDE model to an ODE model with aging
by assuming piecewise constant parameter functions (see [8] for more details).
This figure shows immunity periods of 5, 10, and 15 years. We observe that the
proportions of people with three infections in a lifetime is much lower than those
with one or two infections, particularly when immunity is long-lasting.
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Figure 9: Numerical simulations of the age-dependent ODE system for three values of
the immunity period: 1/ω = 5, 10, and 15 years. Source: [8].

5 Discussion

In this paper, we derive formulas that can be used to estimate age-dependent haz-
ard rates of infection or FOI by fitting to observed serology or disease surveil-
lance. Expressions for the FOI for continuous λ(a) and discrete age λi are pre-
sented. And several examples are shown of fitting these formulas to observations
of varicella, measles, and pertussis. These FOI are needed to estimate the prob-
ability of infection on contact βi using relations like equation (2). We have not
included measures of uncertainty associated with our best fitting parameter esti-
mates, as this subject warrants separate treatment.

The cases considered in this paper include those when routine and/or supple-
mentary vaccination programs are implemented, and diseases confer permanent
or temporary immunity. Although we consider relatively simple scenarios; e.g.,
at most three infections in a lifetime for pertussis, our approach can be used to de-
rive formulas for the FOI if more than three infections are considered. However,
numerical simulation results shown in Figure 9 suggest that it may be sufficient
to consider only two infections.
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