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22 J.E. HERNANDEZ

Abstract

In the present article it is presented a characterization of all those func-
tions in the space of bounded mean oscillation functions, BM O, in terms
of an appropriate wavelet, using an isomorphism between the aforemen-
tioned space and the homogeneous space of Triebel-Lizorkin FO%Q. In ad-
dition, a new inequality that involves the vector inequality of the maximal
function of Hardy-Littlewood is proved.

Keywords: BMO function space; Triebel-Lizorkin’s homogeneous space;
wavelets.

Resumen

En el presente articulo se presenta una caracterizacién de todas aque-
llas funciones pertenecientes al espacio de oscilacién media acotada,
BMO, en términos de una apropiada ondicula, usando un isomorfismo
entre el mencionado espacio de funciones y el espacio homogéneo de
Triebel-Lizorkin FO%’2. Ademéds, se prueba una versién nueva que involu-
cra la desigualdad vectorial de la funcién maximal de Hardy-Littlewood.

Palabras clave: espacio de funciones de oscilacién media acotada; espacio
homogéneo de Triebel-Lizorkin; ondiculas.

Mathematics Subject Classification: Primary 22E46, 53C35, Secondary 57S20.

1 Introduction

Wavelets were introduced in early’s 80, they have been of interest for the math-
ematical scientific community and other disciplines. The wavelet analysis has
been used as an alternative for the windowed Fourier analysis, that is, for the
case in which the objective is to measure the frequency content of a signal, while
the case of wavelets is to compare several sizes of this signal with different res-
olutions. To fix a clear definition: a function ¢ € Ls(R) is an orthonormal
wavelet provided the system {1 ;. : j, k € Z} is an orthonormal basis for Lo(RR)
where _
Gip(x) =222z — k), forall j,k € Z.

Besides providing us with orthogonal bases for the Hilbert space Lo(R),
some wavelets gives us natural basis for other topological spaces.

Recently, in 2008, Triebel [13] presented some results that associate the use
of wavelets with the Besov function spaces and certain estimates for local means.
Also, in 2010, Han and Lu [7] made use of the Littlewood-Paley theory and the
multiparameter Hardy space theory.
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CHARACTERIZATION OF BMO USING WAVELETS 23

Using the Littlewood-Paley theory, and the wavelet representation of func-
tions in a fixed function space, it is possible to obtain characterization of such
function space. To cite a few instances, in [8] it is the characterization of the
functions in the Lebesgue space L,(R), (1 < p < c0), Hardy space H;(RR) and
Sobolev space LP*(R), 1 < p < o0, s = 1,2,3,... Below it is showed these
characterizations.

Theorem 1. Let o) be an orthonormal wavelet such that ) € R°. If 1 < p < o0,
there exist constants Ay, and B), 0 < A, < B, < 00 such that

1/2
Ap £, m) < Z Z [ XE 2%X[2*jk,2*j(k+1)](')
jez kez L
P
< By I fll 1, ®)

forall f € Ly(R).

Theorem 2. Let 1) be an orthonormal wavelet such that ) € R°. If 1 < p < oo,
there exist constants Ay, and B), 0 < A, < B, < 00 such that

1/2
Ap ey < (| D0 DI i) 25 X[p-ik2-s (k1) (")
ie ket
Lp(R)
< By | fll gy g) »

forall f € Hi(R).

Theorem 3. Let v in the Schwartz class, S, be a limited band orthonormal
wavelet. For 1 < p < ocoand s = 1,2,3,...; there exist constants A, s and
By, 0 < Ay, < B, < oo such that

1/2

Ap oy < I D0 DI i) (1 +27%) 20 s 23 (1)) ()

JET ke

< Bp £l oo my »
forall f € LP*(R).

Frazier, Jawerth and Weiss showed, in [5], that the homogeneous space of
Triebel-Lizorkin F 02 i isomorphic to the Hardy space H!; also, Fefferman in
[1], proved that BM O space is the dual space of H'; and Fra21er and Jawerth in
[3], proved that F2? is the dual space of F 2 We use these results to achieve a
characterization of BM O, with wavelets coefficients, through functions in E2?.

Lp(R)
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24 J.E. HERNANDEZ

2 Preliminares
By L,(R),1 < p < oo we denote the Banach space of equivalence classes of

measurable functions on R whose p’th power is integrable (respectively, which
are essentially bounded if p = c0). The norm in L,(R) is defined by

1/p
1l = ( / !f(:c)!pdw) A <p<oo),

in the case of p = oo
[flloe = esssup|f(z)].

Similarly, by {,(R),1 < p < oo we denote the Banach space of sequences
{a } 1,z of real (complex) numbers whose p’th power is summable (respectively,
which are bounded if p = 00). The norm in /,(R) is defined by

1/p
{aw}rezll, = (Z|ak|pdl’> ;

kEZ

in the case of p = oo
H{ak}kezHoo = sup [ay| .
keZ

When p = 2 the inner product of functions f, g in Lo(RR) is defined by
()= | Faateds

so that we shall say that two functions f, g are orthonormal if

(f. ) = /]R Fa)g@)dz = 0.

We will say that the sequence {f,},,c; is orthogonal if (f,, fin) = Onm.
where J is the Dirac delta function

5 _ 1, if n =m,
W0, if n# m.

The convolution f * g is defined by
(F+a) (@) = [ ftate )t
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CHARACTERIZATION OF BMO USING WAVELETS 25

The Schwartz class .S, consist of those functions ¢ satisfying

i) ¢ € Coo(R),
i) sup sup (1+ xZ)k ‘go(m) (:L‘)‘ < 0.
m<k xeR

This kind of functions are known by rapidly decreasing functions.

We shall say that a distribution ¢ is a tempered distribution if ¢ € S*, where
S* is the dual space of S. Also, a tempered distribution ¢ is modulus polynomial
if o € §* /P where P is the set of polynomials over R. All these basic concepts
can be found in [11].

The following lemma shows how a tempered distribution can be written in
series using the Schwartz class of functions .S, which have Fourier transform
with compact support, and its proof is outlined in [8].

Lemma 1. Let ¢ € L2(R) be a function such that supp(y) C [—, 7], and

> li@e)|

JET

=1, forae. £€R—{0}.

If f is a tempered distribution then

F=Y (i) vine

JEZ keZ

The following result is mentioned in several publications, it will be useful
for the present work, and next a proof of the same one is presented.
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26 J.E. HERNANDEZ

Proposition 1. If f is a tempered distribution and p € S then

[(f, il <27 sup |(Zo-sx f) )|, forall j,k €,
Yyel; K

where

—Z

pix(x) =250 (z— k), G(@) = p(-2), Fo-s(2) = 70(5)
and
Lk =277k, 279 (k + 1)].

Proof. Let ¢ € S. Since |¢(m) (x)} = ‘gp(m)(x)’ we have that p € S. In other
hand, if f is tempered distribution, we can observe that

(fg) = /R FOB(b)dt = (),

S0, treating f as a bounded linear operator, we get that (f, ) is finite. Also we
get

Foopn) = / £(t)
- /f L 9% (20t — k) di

= 22/f ;J o(=2/ (=t +277k)) dt
f(t)

o fro-

= 27 (P * f) (2k),

I\JL

0o-i (279K — t)dt

for all j, k € Z.In consequence, if [;, = [277k,277(k + 1)] then

[(f, 05| < 27972 sup |(Bo-i * f) (y)] -
yelj i
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CHARACTERIZATION OF BMO USING WAVELETS 27

Given an orthonormal system { f,, }, ., and a function f, we define the Fourier
coefficients respect to the system { f,},, . as

ck::<f7fk>’ kGZ,

and the Fourier transform of a function f € L;(R) N La(R) is defined by

fle) = /R f(@)e e de,

and the inverse transform by

fla) = 5= [ Flereed,

in the case of a tempered distribution f, the Fourier transform is also a tempered
distribution defined by

Flo)=£@). (peS),

moreover
(f*xp) = fo.
It is known the following result showed by Hernandez and Weis in [8].

Lemma 2. Let e > 0. Let f, g be functions and C,Cy > 0 such that

()] < mi:w and |g(x)] <

G
(1 + =)

for all x € R. Then there exist C' > 0 such that for all j, k,l,m € Z, j > 1 we
have

c2’r
(142 |z — 277k — 2-lm|)' ¢’

| (fik * gm) ()] <
forall x € R.

We shall say that ¢ € La(R) is a wavelet if {); 1}, , -, is an orthonormal

basis for Ly (IR) where 1) () = 25 (2 — k).
The next Theorem gives us a characterization of the wavelets in terms of
properties of their Fourier transform (see [8]).
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28 J.E. HERNANDEZ

Theorem 4. A function ¢ € Ly(R), with |[¢|| ) = 1, is an orthonormal
wavelet if and only if

Z ’12(2]5)‘2 =1, for ae. £ €R,
JEZ

and

o
Z ¥ (29 (£ +2mm)) =0, for ae. E€R,m € 2Z + 1.
7=0

Definition 1. A wavelet 1) is called limited band wavelet if supp(d;) C I for
some I C Rwith[(I) < .

Remark 1. The Lemarié-Meyer wavelet is in the Schwartz class with Fourier
transform given by

D) = b()e'
where
Sin(i( ;)) if §7r<\§|<§ T,
MO =oin (3 (Sn-16l)) o gr<ld<in
0 in other case.

2.1 Maximals functions

Let f be alocally integrable function over R, we define the maximal function of

Hardy-Littlewood by
1
Mf(z) = sup_— |f(y)| dy.

r>0 2r ly—z|<r

An important result regarding this maximal function, and related to L,(RR)
functions, was established by Fefferman and Stein in [2].

Theorem 5. Let 1 < p, q < 00, then there exist Cp, 4 such that

1/q 1/q
Z(an'Z} {Z rfz-rq} :
= Ly (R) = LP(R)

for any sequence f; i =1,2,3,...; of locally integrable functions.
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CHARACTERIZATION OF BMO USING WAVELETS 29

As an immediately consequence, if f is a locally integrable function then the
functions f1 = f,0 = fo = f3 = ...; are locally integrable functions, and an
application of Theorem 5 with ¢ = p shows that

ML < Colfll,, p>1.

Therefore, for any sequence f; : ¢ = 1,2,3,...; of locally integrable func-
tions we have

IMFI, < Cpllfill, . p>1, i=1,23,... (1)

In the main results section it will be established a new similar result.
The following result is proved by Hernandez and Weiss in [8].

Lemma 3. Givene > 0 and 1 < r < 1+ € there exist C' such that for any
sequence {sj, : j, k € Z} of complex numbers and any x € I}, we have

(@) if 1<,

|Slm|
) S C
Z (1+ 227k — 2-Im|) e

M (Z R Xll,m> (x)] :

meZ meZ

(b) if 1>},
[$tm| (1= ) '
ml < 20=ire | M st x5, | ()]

where M is the maximal function of Hardy-Littlewood.

For a function g on R and for a real number A > 0, we consider the maximal
function ( )
% glur —y
gx(x) = sup=————%, ;
yer (1 +[y|)

Hernandez and Weiss show a relation between these maximal functions in [8].

Lemma 4. Let g be a limited band function defined over R, such that
gx(x) < oo, for all x € R and X > 0. Then there exists a constant C > 0
such that

ga(z) < Cy [M (Iglm) (az)]A, z e R.

Also, the same authors in [8], proved the following Lemma.
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30 J.E. HERNANDEZ

Lemma 5. Let ¢ be a limited band function, f € S', 0 < p < oo such that
wo-i * f € Lp(R), for all j € 7. Then, for all X > 0 there exists a constant C'
such that

(ei3) @) < &3 [M(lpas « 1) @], weR

where

o  pg-i x f) (= y)
(= )(w)—zlelﬂg Qxop) z €R,

and ¢ (x) = (1/t)p(x/t).

2.2 Hardy, BMO and Triebel-Lizorkin function spaces

Garcia and Rubio de Francia in [6] wrote about the following function space.
Given the functions

1 t
Pz)=~—
o) = m e

1 =
W)=t

and a function f € L,(R), 1 < p < oo, we define the functions

u(z,t) = (P f) () = 1/R(x—yt)2+t2f(y)dy’

vant) = Qe ) @) = 1 [

both are harmonic functions and

lim u(z,t) = f(z) aeinR.

t—0t

We define F': C — C by

f()
T —y

F(z) = u(z,t) +iv(z,t) = i/R dy,

™

then F' is an analytic function.
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CHARACTERIZATION OF BMO USING WAVELETS 31

The set
Re(H)' = {f € LY(R) : sup (/ |F(J:—|—it)|da:> < oo} ,
t>0 \JR
equipped with

£l = sup (/R |F(x +it)] da:) :

is a Banach space. When Re(H)! is "complexified" then it is named Hardy
space and denoted by H'(R), that is to say

f € H' (R)ifand only if f = g +ih, g,h € Re(H)".

The sharp maximal function of a locally integrable function f over R is
defined by

@) =suw g [ 17) = il du

where the supremum is taking over all intervals I = (a, b) such that x € I and

1
fr= [ Ty,
1| /1
Let B be the set of all locally integrable functions f such that f* € L>°(R), and
1L =117 -

So we obtain a seminorm ||-||, such that || f||, = 0 if and only if f is a constant
function almost everywhere.
In [9] we can find the following definition.

Definition 2. The quotient space of B modulus the constant functions is called
Bounded Mean Oscillation space functions and is denoted by BMO = BMO(R)
and |||, is a norm over this space, making (BMO, ||-||,) a Banach space. Also,

f € BMO when it determines one of the equivalence classes in this quotient
space.

This function space was introduced by John and Niremberg in [9], contains
all bounded functions, that is to say, L>° C BM O, and the unbounded functions
for which holds

o e T:1f() — fil > 3] < Crel i),

for some C7,C2 > 0. This last inequality is known as John-Niremberg
inequality.

C. Fefferman in [1] established that BMO is the dual space of H'(R), also
A. Torchinsky enunciated and proved, in [12], this same result.
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32 J.E. HERNANDEZ

Theorem 6. BMO(R") is the dual space of the Hardy space H'(R"). The
inner product (f,g) = [gn f(x)g(x)dz for f € BMO and g belonging to the
dense subspace of C™ rapidly decreasing functions in H'.

Other function spaces that will be of interest in this work are defined below.
(See [10]).

Definition 3. For0 < p < 0o, 0 < g < ocoand s € R, the Homogeneus Triebel
Lizorkin F,'? space function is defined as the space consisting of all distributions
(modulus polinomia) such that

p/q 1/p
L2 lernsr ) de]| <o
R

JET

where @ is a function that satisfy the following conditions

(i) p€S,
1
iy sup (9) € {e e 5 <lel <2},
(iii) Y ez |0 (2772) [ = 1.

Forp =00, s € Rand 0 < q < oo the space 32 s the set consisting of all
tempered distributions (modulus polinomial) such that

1/q

sup |2 / 23‘32 lpg—i * f(x)]|? dx < 00,
R

l,meZ jez
where @ is a function that satisfy the conditions (i), (ii) and (iii).
In the following, %252 will denote the set of all functions that satisfy (i), (ii),
(iii) conditions in Definition 3.
For the purpose of this work is important next theorem, which is enunciated

and proved by Jawerth and Frazier in [3].
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CHARACTERIZATION OF BMO USING WAVELETS 33

Theorem 7. Suppose that s € R and 0 < q < oco. Then (Ff’q) R Fogqu'.

That is, if g € Fo_os’q/, the mapping lg, defined by l,(f) = (f,g), for f € So,
where

So = { f: f = 0insome open set containing zero} ,

can be extended to bounded linear functional over F'? with ||1,|| =~ 9]l z—s.a-

Reciprocally, ifl € <F15’q> then there exist g € Exx>? such that | = ly.
Also, Frazier et. al. in [5] proved the following result.

Theorem 8. The Hardy space H' is isomorphic to the Triebel Lizorkin space
02,

Remark 2. The BM O space is isomorphic to the Triebel Lizorkin space EY?

due to Theorems 6, 7 and 8.

3 Main results

The following result is about Hardy-Littlewood maximal function.

Theorem 9. Let {f,}, ., be a sequence of locally integrable functions. Then
there exist C' > 0 such that

1/2 1/2

sup 2l/ Z M fi(x)]? da < C sup 21/ Z | fi(z))? dx:
Il,m Il,m

I,meZ = I,mez P

where I, = [Z_lm, 27t (m + 1)] forl,m € Z.

Proof. Let f;:1=1,2,3,...; be a sequence of locally integrable functions.
From inequality (1) it is obtained that

MU, < Collfill,, p>1,i=1,2,...
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34 J.E. HERNANDEZ

In particular if p = 2 then

//\/lfl :c<02/|fl )|? da.

Let I C R be an interval. Let g; : ¢ =1,2,3,...; be the sequence of locally
integrable functions defined by g; = f; - x1, i = 1,2,3, ... From (1) it is had

/ (Mgi(2))?dz < C2 / l94(2) 2 de,
R R
that is
/R (MU - x1)(2))%dz < C3 /R i xa ()| de = C2 /I i) da,

therefore

[mtsy@)pae < c3 / i) 2 de
I I

Let [,m € Z arbitrary and fixed integers. We can observe that if / = I; ;,, then

/Il}mgwfi(w))?dx = ; /I (M fi(z 2)
Z/ fia |dx—cg/ S fi(@) P da.

i>1 Iim i>1

IN

So, multiplying both sides of (2) the inequality by 2! and taking supreme over
l,m € Z it is obtained

1/2 1/2
sup Ql/ Z:]/\/lfZ )? da: < C sup 2l/ Z\fz )|? da ,
1,meZ Im 551 l,meZ Tim 5>
where C' = (5. The proof is complete. O

Theorem 10. Ler ) € R%2 Then

sup 2! Z 27 \f¢;k>\ lek( z) SCHfHFo%’Q’

I,meZ Il m ] kCll .
T 0,2
for all distribution f € F3”.
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CHARACTERIZATION OF BMO USING WAVELETS 35

Before proceed with the proof, let us stablish the following observation about
the notation; the symbol

>

Ij,kcll,m

can be written as

27~ (m+1)—1

2. 2

Jj2l k=2i—lm

since I ;. and I; ,,, are dyadic intervals, and I; ;. C I, ,, indicates that the sum is
taken over those index j, k € Z such that the inclusion condition hold.

Proof. Let us fix I,m € Z. Let j € Z such that j > [ and x € I} ,,. Using
Proposition 1 we find

27—t (m+41)—1
S Wil ? 2 g, (2) 3)
k=2i—lm
21~ (m+1)—1 2
< ) (Sup (%—f*f) (Z/)D X1, ().
k=2i-lm  \YSTik
Note that if =z € Ij,;, , then there exists an unique

K e {Zj*lm, 27 m+ 1) — 1} such that z € I/, because of I; are
disjoint intervals. Then the inequality (3) can be rewritten as

27 (m+1)—-1 ‘ B 2
> 2 (@) < (sup (92 1) <y>\> X, 0 (@),
k=2i—1m yeljk

4
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36 J.E. HERNANDEZ

But, if x € I then for all y € I ;s there exists z € R such thaty = z — z,
and since

27K <ax <279k +1) and 277K <y <279k +1),
then ' . ‘ '
27K -2 (k+1) <az—y <27/(K +1)—277F,

that is
—927J <z< 2—37

which is equivalent to
|z| <277,

so, the inequality (4) can be written as

27—t (m+1)—1 ' N 2
S a2 @) < <| sup |(d2ms+ ) (@ - Z>D -
k=2i—lm z|s277

Let A\ be an arbitrary positive real number. Multiplying and dividing by
(1+27 |z])2)‘ in inequality (5), it is had

2

(7;273‘ *f)(x—z)‘

(1+ 29 [2])

20=!(m+1)—1 sup

Z |<f»7/)j,k>\22j le,k(iﬂ) < |2[<2—7

k=2i—lm

(1427]2))*

sup (1;277‘ *f) (56—2)‘ i

|z|<2—7 22)\
(1+27 [2)*

IN

2
(2 (vp3) @)
where ;; f is the maximal function defined in Lemma 5.

Taking the sum respect to j it is obtained

27—t (m+1)—1

S Y PP @) <X (2 ) @) ©

j=2l k=2i-lm j>l
in consequence, using the Lemma 5

2=t (m+1)—1

S Y PP @) < O M (e 1) @)

Jj=l k=2i"lm >l
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CHARACTERIZATION OF BMO USING WAVELETS 37

In particular, taking A = 1 and using the Theorem 9 with f; = ¥,—; * f it
follows

G [ MW+ )@Y e <O [ (s« ) @) da,

lm]>l Iim j>l

SO

.

multiplying by 2!, and taking supreme over [, m € Z, it is attained

20— l(m+1)

(Fo i * 2 Xz, () < 010/1 D (@ % f) (@) da,

mog>l =27 l g>l

20~ lm+1) 1

sap (23 83012 X1, (2) ) < C N fl0n.
L,

Il,meZ m >l p—gi- lm

Here, the capital letter C' is used for denote the product C;C'. The proof is com-
plete. O

Next result establishes an opposite inequality to that found in Theorem 10.
Theorem 11. Let o) be a function in R%2. If f e E2? then

Il (m+1)—1

2
lpg2 < D sup |2 /I S Y X, (@)
,me l,m

j>l k=2i-lm

Proof. Let € R%? and fe E2? be as in the statement. Since f is a tempered
distribution (modulus polinomial), by Lemma 1, it can be written as

f = Z Z <fa ¢r,s> ¢r,s'

rEZ sE€EZ

For a fixed and arbitrary j € Z, it follows

(s 5 ) (2) = DD (Frrs) (Yams % trs) (@),

rEZ s€Z

and taking Fourier transform in that expression, it is obtained

(Was )" (€)= D) (frthrs) o (E)1hrs(€). (7

rEZ sEZ
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38 J.E. HERNANDEZ

Now, it is known that supp ({b\) C {f eR: (%) <gl < 2} implies that

supp (&2—3') Cl{eeR: 27 < g <27t}

and R
supp (w) Cl{eeRr 27 < g <27t}

therefore, if £ ¢ supp (@2_]-) () supp <1ZJ\TS> then the terms q—; (& )zﬁm(f ) are
zeroes for those r € Z such that r ¢ {j — 1, 7,7 + 1}, so the series (7) can be
written as

Jj+1

(Wos * 1)) = D D {frthrs) o () s(8).

r=j—1 s€Z
Applying Fourier inverse transform it is had

j+1

(¢2J*f ZZf¢rs 1/’2 J*¢T5)()'

r=j—1s€Z

Since ¢ € S then (¢o—; *x1rs) € S, and for ¢ > 0, an application of
Lemma 2, it follows that

25C

ik ) < .
s ol € G

1

(1 + [z —al)'**
x€lj_15 Cl1js, CIji1s, itis obtained

Since g(z) =

has an absolute maximum in £ = a, then, if

25 (¢ _ 25
(14201 |z — 273+1s)! T8 = (1 4 20-1 |25 1) — 2-5+1g)' T’
25 2% C
. s 1+€ S . . s 1+E7
(142 |z —277s]) (1427|2759 —277s])
and
25 - 25(C
(1420 |z —277s)' " = (142041 |20+1g3 — 27— 1g)) ! F
forall s € Z.
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In consequence,

25C (£, 1.8)]

(14201 |20-1g) — 2-7+15|)1He

(g * f(2)| [ty * f(2)] <)
SEZL

25C (£, i)
+2 (1427|2959 — 2735)'**

SEL

iy 250 |(f, 41|

= (142011 |27 gg — 2 1g|) 1 He

Now, with an application of Lemma 3 to each sum, it follows estimate

s % f(2)] < 25C

M <Z [FRT] ij1,3> ()

SEZ

+M (Z (f, ¢j,s>|XIj,S> (z)

SEZL

+ M (Z ’<f7 wj-l-l,S)’ XIj+1,s> (Z’)] :

SEZL

Taking power operations, summing about j, integrating over [; ,, and taking
supreme over [, m € Z it is attained

1/2

I£1pge = sup (2] 3w fa)da
l,mEZ Il,'m ]Zl
1/2
< C | sup zl/ Zmz <Z|<f,¢j_1,s)|><1“,s> (x)dx
Il,meZ Il,m >l seZ
1/2

+ sup 21/ > oM <Z|<f7¢j,s>!><1j,s> (z)dx

l,meZ Iim >l seZ

1/2

+ sup 21/ Z M2<Z [(f,j41,)] x]jH’S)(ac)d:L‘ . (8

l,mEZ Il,7n jzl s€Z
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Now, doing the index change k = j — 1 in the first term of the previous sum,

2l/[ ZM2 (Z |<f7 ¢j1,s>|2%XIj_1,s>(33)dm

Lm j>] SEZ

=2’ /] > oM? (Z [(fs )| 2%'ka,5> (z)dz,

Lm k>1—1 SEL

since I}, C Ij—1p—1, itis had

21/] ZM2 (Z|<fv¢j1,S>|2gX1j—1,s>(m)dx

Lm > SEZ
k
<2'C / > M (Z [(F, ko)l 2%,5) (z)dz,
I 1 m >l s€Z
so, renaming the index in the series and taking supreme over [, m € Z
1/2
J
sup (2 [ 3 M (S I 2500, ) (@)
l,meZ I m §>1 seZ
1/2

< C sup 211/1 ZM2 (Z [(f5 4,50 2%le,5> (z)dx

lmeZ > seZ

Now, adding the positive terms of the form |(f, ;)| with s € Z in the third
term of (8), it is seen that

1/2
i
sup 2l / ZM2 Z ’<f7 wj—l,sH szljfl,s (.’L‘)d$
l,mEZ Il,m ]Zl sEZ
1/2
<Csup (2 / STM (Y 28k, | (2)de
l,meZ fimim—1 5> s€Z
Thus inequality (8) remains as
1/2

I£l502 < C sup 2’/ ZM2<Zr<f,wj,s>\2%xfj,s> (2)da

,MEZL Ilfl,mfl j>l SEZL
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Applying Theorem 9 in the right side of the previous inequality, it is attained

1/2

J
flpge < Cowp (2 [ TSR P 2, ()
l,meZ I 1m—1

-1 j>1 seZ
The proof is complete. O

The following proposition shows another valid expression for the considered
characterization.

Proposition 2.
1/2
sup 21/ I(f, ¢j,s>|2 Q%ij_’s(x)dx < 00,
I,m€eZ I

lm[ kCIlm

if and only if there exist a C > 0 such that

2l Z |<f7wj,s>|2 < Ca

I; k€I m

foralll,m € 7.
Proof. If
1/2

sup 2l/1 |(f, 05602 X1, (z)dx = A < o0,

Lmez Lm I kCIl m

then

21/1 [(F s 22 x1, , (2) do < A,
l

""I kCIZm

for all m,[ € Z. Since

/ X, (¢)de = 27,
Il,m 7

it is obtained that

2! /1 (f i) 2 28 X, (2)da
1

m[ kC]lm

= Y w2 [ (e < 4%

I; €I m Iim
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That is

2 Y (e

Lk Chm
where C' = A2,
Reciprocally, if there exist C' > 0 such that

2l Z |<f7wj,s>|2

Ik Clim
for all [, m € Z then

o N 2 =2t ST |(f ) P2k / x1, . (2)de

Lk Clim LikClim Iim

_ o /I (f 5.0 2 28 X1, L (2)da

lm[ kCIlm

SO

Operating with the % power and taking supreme over [, m € 7Z, it is had

1/2

sup 21/ [(f, .60 2 2%X1jﬁs(:v)dx <C.
I,

I,meZ m [yl
So, the proof is complete. O

As immediate consequence from Proposition 2, Theorems 10 and 11 we have
the following.

Corollary 1. Let ¢ € RE2. f € BMO if and only if there exist C' > 0 such

that
2 " e

I; k€I m

foralll,m € 7.

In particular, if 1) is a orthonormal wavelet in R%? we obtain a characteriza-
tion of BM O using wavelets coefficients. The Lemorié - Meyer wavelet, showed
Preliminaries section, is in the class %gf.
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4 Conclusion

In the present study, results concerning the characterization of the space BM O
functions are found by using a special class of wavelet and homogeneous spaces
of Triebel Lizorkin F-2?. Also, a new version of a vector-valued inequality using
the classic maximal function of Hardy-Littlewood was also found (Theorem 9).
Finally, as a consequence of the characterization established for BM O (Theo-
rems 10 and 11), a result was found (Corollary 1) which responses to a proposal
made by Wojtaszczyk in [14].

This work is expected to serve as a useful and motivating tool to find new
characterizations of function spaces using wavelets.
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