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98 J.MARCANO — S. INFANTE — L. SANCHEZ

Abstract

In this article we introduce some matrix manipulations that allow us to
obtain a version of the original Christoffel-Darboux formula, which is of
interest in many applications of linear algebra. Using these developments
matrix and Jensen’s inequality, we obtain the main result of this proposal,
which is the generalization of the maximum entropy theorem of Burg for
multivariate processes.

Keywords: multivariate processes; maximum entropy theorem; Christoffel-Darboux
formula.

Resumen

En este articulo se introducen algunas manipulaciones matriciales que
nos permiten obtener una versién de la férmula original de Christoffel-
Darboux, la cual resulta de interés en muchas aplicaciones del dlgebra
lineal. Usando estos desarrollos matriciales y la desigualdad de Jensen, se
obtiene el resultado principal de esta propuesta, que consiste en la genera-
lizacion del teorema de entropia mdxima de Burg para procesos multiva-
riados.

Palabras clave: procesos multivariados; teorema de entropia méaxima; férmula
de Christoffel-Darboux.

Mathematics Subject Classification: 94A17, 46E22.

1 Introduction

In 1975, Burg [2], in his doctoral thesis solved the following problem: given
the first p covariances co,c1,...,c, of a stationary stochastic process X =
{ X }nez, find the spectrum f of the process X which maximizes the functional

1 27
e(g) = 27T/o log g(t)dt
subject to
1 2 )
7 /) g(t)e *dt = ¢, |k| < p. (1)

Since then many different authors have studied this problem, see for example
[3], [8] and [10]. In 1993, Gabardo (cf. [7]), using the Krein functional (cf. [1]),

2T ) _ 0[2
clg.0) = 5 [ toglale)] o

27 |1 — qeit|2
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GENERALIZATION OF THE MAXIMUM ENTROPY THEOREM OF BURG 99

generalized Burg’s previous result. He showed that there exists a family of func-
tions {wq} ( « is a complex number with |a| < 1) that satisfy (1) and the
inequality

€(9,@) < €(wa, @) 2)

for all spectra g which satisfy (1).

The notion of entropy for multivariate time series was also studied by Burg
in his doctorate thesis and later by other authors (cf. [2], [4] [9]). Gabardo
[7] points out that Dym in [6] presents without proof a matrix version of the
inequality (2), for the Wiener class.

Here we consider the Krein functional:

oy 1 1= af? log d ity
eW;a) = 27?/0 T ac 2 ogdet W (e")dt
and show that there exists a family of matrix functions {W,} ( « is a complex
number as before) that verifies the matrix version of (1), in such a way that the
inequality €(F,a) < ¢(W,,«) is valid for every matrix function F which is
integrable on the unit circle satisfying the same restrictions as W,.

The paper is organized as follows: in the second section we introduce some
notations and preliminary results. In the third section we obtain a matrix version
of the Christoffel-Darboux formula (cf. [5]). In the last section, we state the
main result of the paper.

2 Preliminaries

In this section, we fix some notations and state a preliminary result given in [9].

Let N and Z stand for the set of natural and integer numbers. Let C denote
the set of the complex numbers and ID the open unit disk in the complex plane,
ie. D := {z € C: |z2] < 1}. The unit circle, the boundary of D, will be
denoted by T. Given n,m € N, let C"*™ be the set of all n x m matrices,
A = {A YTl with Ay € Coi=1,...n,5 = 1,...,m. Ifm = 1,
we write C" instead of C"*!, If A € C™*" we write A > 0 if u*Au > 0 for
u € C™, u not null, and denote by A* € C"*"™ the conjugated transpose of A.

u! will denote the transpose of a vector u. Let

L> :={f:T — C: f Lebesgue measurable and esssup | f({)| < oo},
¢eT

2
L':={f:T — C: f Lebesgue measurable and / |f(e®)|dt < oo},
0
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100 J.MARCANO — S. INFANTE — L. SANCHEZ

and L? = L?(T) the space of functions f, f : T — C, measurable and square
integrable (with respect to the Lebesgue measure, dt on T), with norm and inner
product denoted by ||.|| and (, ), respectively. We write

Lo°(C™™) i= {F : T — C™™ : F = {F, ;})-"" with F; j € L},

N

and,
L3(C™™) = {F : T — C™™ : F is measurable and

1 2 ) )
[ (F(E), F(et)) gnxmdt < oo}.
2
Given F, G € L?(C™*™) the inner product is defined as

1 27 ) )
/ (F(e), G(e)) ot
0

<F, G>L2((Cn><m) = %

If m = 1 we write L2 instead of L?(C"*!). For F ¢ L*(C"™*™) and
k e Z, let the k—th Fourier coefficient of F, denoted by F(k), be the matrix

defined by F(k) = {F};(k)H=]"" where Fy j(k) = o [77 e F, j(e™)dt.
If {Q; ]}J 1’ ™ is a set of finite measures defined on T, we denote by €2 the ma-
trix measure Q ={ j}j L™ The k—th Fourier coefficient of €2, Q(k) is

the matrix Q(k) = {Q; (k )}] . . where Qi (k) = %f02 ~iktdQ; i (et).

Define e, by e, (¢) := (¥, ¢ € ’]I‘, k € Z and recall that {ey }rez is a complete
orthonormal system for the Hilbert space L% 1If {EZ}Zzln is the canonical
base of C", then B := {exE' : k € Z,i = 1,...,n} is a complete orthonor-
mal system of L2. Also, if we define the matrix E™/ = {§;(k)d;(l) 2::11’;::.’32
then {e;E : k € Z,i = 1,...,n,j = 1,...,m} is a complete orthonormal
system of L*(C™*™). Thus, if F € L*(C™™) then F = 37, ., erF (k). Fur-
thermore, F(k) = Yoy Z] (F, e EX )2 cnxmyEY7 | k € Z. In particular, if
fe€L2then f =3, ekf( ) with f(k) = Y0 (f, exE") 2 cn)E', k € Z.
Also, H>° (D) denotes the set of analytic functions f on DD, such that its norm
|| flloo = sup,ep | f(2)] is finite and HYS,,,, (D) denotes the space of analytic ma-
trices whose inputs are in //°°(D) and H*° the space H> := H>*(T) = {f €
L>(T): f(n) =0ifn < 0}.

A sequence of ¢ x g complex matrices {Ry}}_
strictly positive definite if, and only if,

Z Z m—nfns fm)ca >0 3)

n=0m=0

for each { fi}}_, C C? not null.

» C C9*4, is said to be
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GENERALIZATION OF THE MAXIMUM ENTROPY THEOREM OF BURG 101

We can prove that if the sequence {Ry}? - is strictly positive definite,
then Ry, = R”*, for k = 1,---,p. Suppose that the sequence of matrices
{Rk}i:_p verifies (3) with Ry = I;x4. Let £, = &,(C?) be the manifold
spanned by {e;, F’ }f;g%, this is, the set of all vectors whose components are
trigonometric polynomials on T, of degree at most p. Clearly, if we define the
inner product in &, by

p p p P
Z enfmz €m9m> :Z Z <Rm—nfmgm>(cq a{fn}izm {9n flzo e C,
=0 m=0 n=0m=0

P

“

then (&,, (,)p) is a Hilbert space of dimension (p + 1)g.
Let 'y, : (&, (o)p) = (Epy (6o, >Lg) be the linear operator defined by the
relation

<prvg>[% = <f7g>p (5)
Let us notice that
P P N
Tp(f) = er > Rip_sf(s). (6)
k=0 s=0

Let D, = Span{e,E® 22(137,'1';7.?,;;71’ R, = Span{exE* Zzllz be the sub-
spaces of &, and let V,, : D, — R, be defined as the linear extension of
Vp(exE®) = ery1E°. Then,

(a) V, is an isometry acting on the space (&p, (, )p)-

(b) The operator I',, is an isomorphism.

(c) The defect subspaces of the isometry V,, N}, = &, © D, and M, =
&p © Ry have dimension ¢ and are given by N}, = Span{T, le, 5},
and M, = Span{l', LegE5}2_, respectively.

Remark 1 We remark that (€,—1, (, >ch1) is a subspace of (Ep, (, >L3) and from
(6) it is easy to see
E,
ngp_lrp|gp71 = Fp_l
where I'p| 4 is the restriction of the operator '), to the set A, A C &, and the
operator Pf is the orthogonal projection of B over A. Thus, if v,y € £y—1
(,y)p = <Fp33>y>Lg = <Fp7175»y>L?1 = (T, Y)p-1-
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102 J.MARCANO — S. INFANTE — L. SANCHEZ

Analogously, if 1 < j < k < p then the identity I}, : (&;,(,);) = (Eks (k)
is an isometry. For k = pand j = p — 1 we set I,,_1, := J. Therefore, we
conclude that if x,y are orthogonal in £,_1, then x and y are orthogonal in &,.
With the above notation before the remark, it is easy to check that

* Dp =J (Dp—l @Np—l) =J (Rp—l ©® Mp—l) =J (V;nDp—l D Mp—l)r
* Rp=VpDp=J(Rp-1 & VpNp1).

Remark 2 If {mk}{_| and {nE}]_, are the orthonormal vectors in (€, (, ),)
obtained by applying the Gram-Schmidt method to {I'; leg EF Mo, and
{T, tep E*}1_, respectively, then

mﬁ = ZAP(]v k)F;IeOEju k= ]-7” 4

q (7
ny = ZBp(j, k)F;lepEj, k=1,---,q.
j=1

Let nf = (nk(1) ---nk(q))" and ml = (mk(1) ---mk(q))". Let us con-

sider M,(¢), N, (¢), ¢ € T, the matrices defined by
N, = {ni(i)}i,ﬁlw,q and M, = {mg(i)}i,jﬂ,m,q ®)

and

Ap ={Ap(1,7) bij=1,..g and By = {By(i, j) }ij=1,...q ©

where the coefficients A,(7,j) and By(i,7);4,j = 1,...,q are given by (7).
From [9] we know that all the zeros of det N, and det M, lie in the open unit
disk D and in the exterior of the closed unit disk, respectively.

3 The Christoffel-Darboux formula

The main result of this section is that £, is a reproducing kernel space. As usual,
we denote by £(C?), the set of all bounded linear operator acting on CY.

Definition 1 We say that the Hilbert space H of functions f : X — C9, has a
reproducing kernel if there exists an application

K:X x X — L£(CY)

satisfying the following properties
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GENERALIZATION OF THE MAXIMUM ENTROPY THEOREM OF BURG 103

(a) Foreachx € X, £ € C?we have that K& € H, where K;(y) = K(z,y)
and (K&, Kyn)n = (K(z,y)§, n)ca

(b) For each f EH, 5 e C1, y € X we have (f(y),ﬁ)(;q = <f7 Ky§>7-£

The next proposition shows that £,(CY%) can be considered a reproducing
kernel space.

Proposition 1 For each z € C, let T;; : T — L(C?) be the function defined by
(T7)x =T, (3h_ Z"exx). Then

(P(2),8)ca = (P, (T7) £)p; £ €CI, P €&, (10)
Furthermore,
P q
)E=D ) (T3) & nppni, € € C
k=0 i=1
wherené :eoElandn}c, k=1,...,pandi=1,...,qareasin (7).

Proof: Note that (T ) x € &, foreach x € C9. Let P € &,. Thus,

(P, (T})x) = <P, ! (zpj Zkekx> >p = <P, izkekx>L2

Finally, that (T7) z = >0 _ 3% ((T7) x, nj,)pnj, follows now the fact
that {”2};;101(]1) is a orthonormal system of £,. W

From this proposition, we obtain the reproducing kernel K (z,§) = Tpg (2).
As a consequence of proposition 1, we obtain a version of the Christoffel-
Darboux formula (see [5]).
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104 J.MARCANO — S. INFANTE — L. SANCHEZ

Theorem 1 (The Christoffel-Darboux formula) If z& # 1 then

M, (§)M(2) — ENp(§)ZN;(2)
1-¢z '

T,(&) = (an

Proof: Let () € £,_1 and z,£ € D. From the preceding proposition, remark 1
and the fact that V11 is an isometry, we obtain that

0= ((e1 = 2)Q, (T;) z),
= (e1Q: (T7) v),., — (1@, 1% (T) )
= (e1Q, (1 —Ze1) (T7) ), -

Using the fact that R, = Span{e;QQ : Q@ € &,—1} we obtain
1 —Ze1) (T?)x € Ey+1 © R, the orthogonal complement of the subspace
p P+ P

R, with respect to the ¢(p + 1)-dimensional space £,41. On the other hand,
e1ns}9_, are orthonormal and { (T0) E5Y? = {T'>(eqE*)}9_, are linearly
pJs=1 p s=1 p s=1

independent. From (8) we know that the orthonormal system {mfp i, is ob-

tained by applying the Gram-Schmidt process to { (7)) E}?_,. Also,

q .
<61n];, mi,> L= <61n;§, Z Ap(J, Z)F;160E3>
P ,
j=1 p+1
q

N4 G <e nk T-1e Ej> 12
Zp(j)lppopH (12)

1

<.
Il

I
M=

. k 0 j _
1 A4, 1) <elnp, (Tp) E7>p+1 =0.

<.
Il

Clearly, {e1n5}?_, and {m,}?_, belong to £,+1 © R, since Q € Ep_1,

<e1n',§,e1Q>pH = <n';,Q>pH =0

and
q .
Ap(J, k‘)F;leoEj,elQ>

<m’;" 61Q>p+1 - <

7j=1

pt+1

Ap(4, k) ((T)) E7, 61Q>p+1 =0.

I
M=

1

<.
Il
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GENERALIZATION OF THE MAXIMUM ENTROPY THEOREM OF BURG 105

Thus, {e1n;}7_, and {mé}gzl both orthonormal systems, generate the 2q-
dimensional space &,11 © R,,. Therefore,

q q
(1 —Zey) (T;) T = Zasm; + steln;. (13)
= s=1

As a consequence of the previous proposition,

v =SS )

k=0 =1
Hence
q p—1 ¢
—Zey (T;)xzz:( 2((T3) x,nj,) )eln + Z( )z, nj,) )elnk,
i=1 k=0 i=1
and,

(1—zer) ( zq:( z((T7) T, nj) )eln;,

=1

+< x+zzlzq:( zZ( xnk>>elnz>.

0 =1

.

(14)

From (13) and (14),

q

st <em§,ep+1E7“>Lg = <(1 —Zey) (T ):1; ept1 E” > 12

=1

) q
Z ( z <x,n >Cf1) <€1n;’€p+1Er>L3
s=1

Then, by = z<x,n >(C‘1’ s=1,...,q.
From (13),

(1 - zeq) (T )z, m]>p+1 Za (my, m), AINEE
s=1

With the same  procedure used in (12) we  prove
<€1 (Tz) x, mfo> = 0, therefore,
p+1

p
s = <(T;> x’m;’(z)>p+l <$ m >(Cq s s=1,....q,
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106 J.MARCANO — S. INFANTE — L. SANCHEZ

and,
(1= 29 (T;) (€)= =Z (2, M,y (2) E*) o, My (€) B
+ i(—a (2, Ny (2) %) ey €N (€ B2,
Therefore, i

S (EIM,(2) B oy (M () E®, E¥)ca

s=1

+3(—2) (B9, Ny(2) B, §<Np(§)ES,Ek> ,
s=1

(126 ((T7) (© B, )

ca

Ca

which yields the desired result. m

4 The covariance extension problem and
the Krein entropy

In 1980, Arov and Krein (cf. [1]) considered the entropy functional

Wia)— L [T 1P e Wt a e
e( ,04)—27T/O moge (e")dt,a € C.

The main objective of this paper is to show that there exists a family of matrix
functions {W } faec:ja|<1} Verifying W(k) =Ry, k=0,1,...,p, (Where the
matrices Ry, are given) in such way that the following inequality e(F, ) <
€(Wq, «) is valid for all matrix functions F which are integrable on the unitary
circle with F(k) = Ry, k= 0,1,...,p.

For this, we use the parametrization stated in [9] of the following prob-
lem: given ¢ X g covariance matrices of the multivariate stochastic processes
Ro, R4, - ,R,, with Ry = I, we want to determine all ¢ x ¢ positive densities
F on T so that

1 2m ) )

— e M (e*)dt =Ry, k=0,1,---,p.

2 Jo

We show that there exists a one to one correspondence between the open unit
ball of the space HS (D) defined as usual and the set of all the solutions of
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GENERALIZATION OF THE MAXIMUM ENTROPY THEOREM OF BURG 107

the problem. Under this correspondence we characterize the set of all measures
which are absolutely continuous with respect to the Lebesgue matrix measure on
T. The spectral matrix densities are given by

_ x| —1 —1- AL % _1 -1 1
Fu(Q) = (N}) 7 [(N; My—CH)| (T, —H'H) [N, M, —CH] ' N,
(15)

where M, and N, are as in (8) and H € H(S, (D) with H'H < I, a.e. on T.
First, we state the scalar covariance extension problem (see [10]): Given
p € N, and ¢, ¢y, -+, ¢p, complex numbers with ¢ > O and c_j, = ¢, k =

1,...,p find a positive density f on T so that

1 21

= e—iktf(eikt)dt = ¢, k =—p, - ,p. (16)
2 0

This problem has solution if and only if the finite sequence {cy}? _ s
strictly positive definite and moreover, given H € H*° (D) such that || H ||~ < 1,
theset {¢ € T : |[H(()| = 1} has Lebesgue measure zero and 1/(m, —(Hny) €
L?, the description of all the desired f is given by

B 1 . my(C) + CH(()np(C)
fH(C) - |mp(c)|2R mp(C) — CH(C)TLp(C)

where m,, and n,, are as in (7) when g = 1.
Consider the function w,, defined by

, ¢ eT. an

oy O laPITg
A ( p ''p
vl = T e e o

where a € D and Tj' = Y77 ni(c)ng. Gabardo (cf. [7]) proves that w, (k) =
cg, k = 0,1,--- ,p. The next lemma shows that for each « there exists H =
H () such that the function w,, can be obtained from (17).

Lemma 1 Given a € D, wo(() = fu,(¢) for Hy the constant function
defined by
Ha(z) = 229
myp(a)

The proof of this lemma can be found in [10].
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108 J.MARCANO — S. INFANTE — L. SANCHEZ

Functions w, are related to the Burg entropy functional by the following
inequality, obtained by Gabardo (cf. [7]).

2m ‘Oz|2 1 27 ) 1— ’04’2
— 1 e dt < — 1 ) dt.
/ oglf \ —ae 27 7 27 og[wr (€")] |1 — ae|?

19)

When a = 0 (19) yields wg, the Burg solution. The next theorem shown by
Burg [2] is a consequence of (19).

Theorem 2 (Burg). Let p € N and {c},},_, be the first (p+ 1) autocorrelations
of a second order stationary process X = {Xy}rez then the density fy of X
which maximizes Burg’s functional €( f) restricted to the conditions

1 2 ) )
o e*lktf(elt)dt:ck, k=0,---,p
is .
it
-~ telo2q].
Fole) = e £ € 27

Now, we consider a matrix version of the previous inequality. A Hermitian
integrable ¢ x ¢ matrix function W on T is called a weight g x ¢ matrix it W > 0
and det W (e®) # 0 holds almost everywhere [5]. Let us suppose that W is a
weight ¢ x ¢ matrix on T. The space L2(W) is defined by

1

LA(W) = { T — €)@y = 5-

2
/ Trace(FWW*)dt < oco}.
0

This space, endowed with the inner product

1

(P, ¥)w =5

2m
/ Trace(@W®*)dt, &, ¥ c L*(W),
is a Hilbert space [11].
Following [11] we introduce in L?(W) a matrix inner product defined by

1 2T
(®,0)w = 2/ PWU*dt, @,¥ c L*(W).
™ Jo

We state the following lemma, whose proof is straightforward.

Let £,(C9*% be the manifold spanned by {e,E"/ }2]: :0,1.’.'.',}5(1’ that is, the set
of all matrices whose components are trigonometric polynomials on T of degree
at most p.

The following result is analogous to that obtained in(10).
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Proposition 2 Given P € £,(C?*9), we obtain

(x5 ), - P

Proof: From the proposition 1, we obtain

Py(&) = (PY), (Tﬁ))p - <PE3,T§E1>p
p p =R ) —~ )
=> 3 <elP(1)Eﬂ,ekT§(k)El>
=0 k=0 p
=3y <R,HP(Z)EJ, T§(k)E’>
1=0 k=0 Ca
P 2 1 [2r PN .= ,
=>> < / e F=DtRy (™) dtP (1) BV, Tf,(k)EZ>
=0 i \2™ o Ca
(L / 7 i%‘ (k) e g (e) iﬁ(Z)ei“thﬂ' E
R B ’ 1=0 7

27 £ . ; .
/0 (T§> (e Fu(e")P(e)dtE E>

Ca

In the next corollary, we show that the matrix T} (2) is positive definite.

Corollary 1 For each o € D,
T, (a) > 0.

Proof: This result is a direct consequence of proposition 2. In fact,

. . 1 27
T;(a) = ((T3)", (T5) )

H_27T 0

because Figy > 0. m

Lemma 2 For each o € D, let Hy(2) = alN; («) [M;] ! (). Then,

H'H, < I,x,.
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110 J.MARCANO — S. INFANTE — L. SANCHEZ

Proof: From the Christoffel-Darboux formula and corollary 1 we have

0 < Ty(a) - MeOMi(0)~ o Nyfe i)

That is, for each non null x € C¢
z* (Mp(oz)l\/[;(oz) — |oz|2Np(a)NI*,(a)) x> 0.
We can rewrite the previous inequality as,
* - —N\T* * -1 *
=M, (@) (Iqxq — aM,(0) "N, ()aN% (o) (M(a)) ) M (a)z > 0.

(From [9] we know that M,(«) ™! exists).
Thus,
u* (Igxg —H Hy)u > 0,

where u = M;jx. [ ]

Proposition 3 For each oo € D, T is invertible. Furthermore, this inverse is
given by

"NCH1 —@et).

(T3] = MG (@) [N, M, - e H] TN,

Proof: From [9], we know that [N; 1Mp — eitHa] -t exists. Therefore,

M) (o) [N, M, = e HA) N
= [N, (N;'M,, — ¢'H,) M (o))
= [M,M (@) — NN (a) (M) ™ ()My(0)]

= [M,M;(a) —eithaN;(a)]_l. n

For each o € D, we define the function

- 1—|af? g —1 it 1—1
W, (e") = e af? [To ()] [To(a)] [ToEe)] . (0)
‘W, represents the matrix version of (18).
The following proposition shows that the matrix function W, can be ob-
tained from (15) for some H,, and therefore W, (k) = Ry, k =0,1,--- ,p.
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Proposition 4 Given o € D, the functions W, can be obtained from (15), set-
ting H to be the constant matrix

H,(2) = aNi(a) [M3] ' (a).

Proof: Let o € . From proposition 3, we obtain

[Te] ' = [M2] 7 () [N, "M, — ¢'Ho) 7' N (1 — @)

Furthermore, from the Christoffel-Darboux formula,

M, ()M () — "Ny ()N ()

T =
p (@) 1— |af?
-1
Lyxq — [o? M, ! (a)Ny, ()N (@) [M; ()]
- M*
P(a) 1— ’04’2 p(a)
| -H'H
= M, () L2 M ().
P(a) 1— |Oé’2 p(Oé)
Therefore,
it 1-— |Oé’2 ay atyx] 1 1o ay ity1—1
Wa(e") = et — a2 [Tp(e ) ] [Tp(a)] [Tp(e )]
1-— |Oé’2 —it x]—1 -1 it s 71 -1
|€zt_a‘2(1 —ae )[Np] {[Np M, —e Ha} } M, " (a)
| -HH, ..
X Mp( ) quI o ‘Oé|2 p(Oé)
x [ME] 7" () [N'M, — ¢'H, ] NS (1 - ae’)

_ A L -1
= [N;] ' {[Nz;lMp - eltHa] } (Igxq — HyHy)

x [N M, - ¢"H,] ' N, !

= FHQ. |
2D

In the next theorem, we use the Krein functional to generalize inequality (19)
obtained by Gabardo.

Proposition 5 The following inequality is valid:

1 2m . 1— 2 1 2w . 1— 2
= / log det[Fy ()14t < - / log det[Wa (e 194
0 0

27 [1—ae @2 ~ 27 |1—aei|?
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Proof: Using Jensen’s inequality (see [S]) and proposition 2, we obtain

% 027r log det(FHWj)’iit__’aO;dt
= | st TS S [apo] g
= o [ Tosaen (1 2Rty ) [rgte] )
< log det % /()%(mrrg(e“)*FHT?(eit) (T3 ()] _1> |iit_|0?|22dt

1 o o ity * a1 « -1
:logdet%/o T5 (") FuTy (e")dt [T (av)]

= logdet ((T5)", (T5)") ., [Ep(a)] !
= log det T} (a) [T;‘(a)]fl =0. m

Gabardo [7] points out that Dym in [6] presents an analogous matrix version
of the preceding inequality, but for the Wiener class.

If we choose @ = 0, we obtain from the previous theorem yields that the
matrix function W, maximizes the Burg functional.

Theorem 3 Given a strictly positive definite sequence {Ry}V — and a q X
q hermitian non negative matrix measure 2 on T, absolutely continuous with
respect to the Lebesgue measure on T, with density ¥ > 0, the maximum of
e(F) constrained to the restrictions

1 2

—ikt it
— F(e)dt = Ry, k= —p, - -
27'(' 0 € (6) k> p7 7p

is attained at

Fo(eit) — (M;)*l (6“)1\/[;1(6“).

5 Conclusions

In this paper we consider the Krein functional e(W; «) and show that there exists
a family of matrix functions { W, } that verifies the matrix version of (1), in such
a way that the inequality ¢(F, o) < (W, «) is valid for every matrix function
F which is integrable on the unit circle satisfying the same restrictions as W,.
In particular, when o = 0 yields Wy, obtain the Burg solution.
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