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Abstract

We consider two options for a particle’s entire journey through a cer-
tain directed graph. Both options involve a random assignment to the jour-
ney route to be followed. We are interested in the option that offers, on
average, the shortest route. Therefore, we determine the average journey
length for each of the two options. As part of our analysis, we prove some
combinatorial identities that appear to be new. Some suggestions for fur-
ther work are given.

Keywords: directed graphs; games on graphs; combinatorial identities; combi-
natorial probability.

Resumen

Se consideran dos opciones para la jornada total de una partícula que
se desplaza a través de un cierto grafo orientado. Bajo ambas opciones, la
ruta de la jornada es asignada aleatoriamente. Nos interesa saber la opción
bajo la cual uno espera la ruta más corta. Por eso, para cada opción, de-
terminamos la esperanza matemática del largo de la ruta. Al parecer nove-
dosas, algunas identidades combinatorias son demostradas como parte de
nuestro análisis. Para concluir, mencionamos varias oportunidades para
futuros estudios.

Palabras clave: grafos orientados; juegos en grafos; identidades combinatorias;
probabilidad combinatoria.

Mathematics Subject Classification: 05C20, 05C57, 05A19, 60C05.

1 The problem

Along the edges of a certain directed graph, a particle moves from an initial
vertex v0 to a terminal vertex vT , which is different from v0. In the directed
graph there are m different paths that have lengths x1, . . . , xm. Each path is
made up of n equal-length edges. For each i = 1, . . . ,m, we set yi := xi/n;
that is, yi is the length of each of the n equal-length edges that make up the path
of length xi. All having the same direction, the paths originate at v0 and end at
vT . Moreover, between v0 and vT , the equal-length edges meet at an additional
n− 1 distinct intermediate vertices, which serve as interchanges between paths.
There are no more vertices and no other edges; thus, the graph consists of n+ 1
vertices and mn edges. An example with m = 4 and n = 3 is shown in Figure 1,
where we have written the edge length yi next to the corresponding edge.

For the particle’s journey, we only wish to consider two possible choices:
stay-on-path or variable-path.
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Figure 1: The directed graph when m = 4 and n = 3.

• Under the stay-on-path choice, the m paths are equally likely, and, at ran-
dom, the particle is assigned to one path for the entire journey. For exam-
ple, with respect to Figure 1, we have m = 4 possible paths having lengths
x1, . . . , x4. Moreover, each path is divided into n = 3 equal-length edges;
therefore, in this case, for each i = 1, . . . , 4, xi = 3yi. Thus, if the particle
is assigned to the path with length x2, then the journey length is x2 = 3y2.

• Under the variable-path choice, we regard the equal-length edges as being
ordered, with the first being the edge closest to the initial vertex, and so
on. Then the particle’s journey proceeds through an ordered sequence of n
edges whose lengths may be different. Note that changing between paths
is only possible at the intermediate vertices, and any such change does not
add any length to the path actually followed by the particle. Thus, the
total journey length is the sum of the lengths of the edges that make up the
actual journey path. For notation, for example, with respect to Figure 1,
when m = 4 and n = 3, we write (y3, y1, y1) to signify the following: the
first journey edge is the first edge of the path having length x3; the second
journey edge is the second edge of the path having length x1; the third
journey edge is the third edge of the path having length x1; therefore,
in this case, the journey length is 2y1 + y3. In general, there are mn

equiprobable possible journey paths, and the particle is assigned to one of
these at random. In Figure 1, for example, some possible assignments are
(y2, y1, y3), (y3, y3, y3), (y4, y1, y4), etc.

The problem is this: Between the two choices, stay-on-path or variable-path,
we wish to choose the one that minimizes the particle’s journey length. There-
fore, we ask the following question: On average, which of the two choices has
the smaller journey length? We invite the reader to pause here for a moment, and
to guess the answer.

The paper is virtually self-contained. Nevertheless, we give two references:
[1] for graph theory and [2] for probability.
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2 The solution

To answer our question, we set out to compute the mean or expected journey dis-
tance for each of the two choices. Along the way, we prove some combinatorial
identities that seem to be new.

Let the random variables DSOP(m,n) and DVP(m,n) denote the total journey
distance to be traversed, respectively, under the stay-on-path choice and under
the variable-path choice. We want to compute the expected values E[DSOP(m,n)]
and E[DVP(m,n)] for each of the two choices.

2.1 Stay-on-path

Under the stay-on-path choice, DSOP(m,n) is a discrete uniform random variable
whose possible values are x1, . . . , xm, each having probability 1/m. Therefore,
in this case, the expected value

E[DSOP(m,n)] =

(
1

m

)
x1 + · · ·+

(
1

m

)
xm

=

(
1

m

)
(ny1 + · · ·+ nym)

=
( n

m

)
(y1 + · · ·+ ym) .

2.2 Variable-path

Under the variable-path choice, an actual journey route is an ordered list of n
edges, the first being the one closest to the initial vertex, the second being the
next closest, and so on, through the nth edge which ends at the terminal vertex.
Thus, in this case, the circumstances are somewhat more complicated than under
the stay-on-path choice. Therefore, we introduce some notation to help facilitate
the discussion.

We regard a possible value for the random variable DVP(m,n) as the result of
the composition of two functions, lengths() followed by sum(). The value of
the function lengths() is the ordered list of the n edge lengths that correspond
to the similarly ordered list of edges that make up an actual journey route; and
then sum() adds up the lengths of the pertinent journey edges. Thus, lengths()
is a vector-valued function

lengths : {y1, . . . , ym} → {y1, . . . , ym}n

lengths ({y1, . . . , ym}) := (yj1 , . . . , yjn) ,
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where yj1 , . . . , yjn ∈ {y1, . . . , ym}, and yji is the length of the ith edge in the
journey route.

To simplify the notation, we let

L := {lengths ({y1, . . . , ym})} = {y1, . . . , ym}n,

the set of possible values or codomain of the function lengths(). Then sum()
is a real-valued function

sum : L → R.
Thus, if lengths ({y1, . . . , ym}) = (yj1 , . . . , yjn), the corresponding value of
the random variable DVP(m,n) is

DVP(m,n) = sum (lengths ({y1, . . . , ym}))
= sum ((yj1 , . . . , yjn)) := yj1 + · · ·+ yjn .

To illustrate, when m = 2 and n = 3, the possible values for lengths(), sum(),
and DVP(m=2,n=3) are given in Table 1.

Table 1: Example when m = 2 and n = 3.

lengths() sum() = value of DVP(m=2,n=3)

(y1, y1, y1) 3y1
(y1, y1, y2) 2y1 + y2
(y1, y2, y1) 2y1 + y2
(y2, y1, y1) 2y1 + y2
(y1, y2, y2) y1 + 2y2
(y2, y1, y2) y1 + 2y2
(y2, y2, y1) y1 + 2y2
(y2, y2, y2) 3y2

In general, we have m possible different paths, each divided into n equal-
length edges, and so it is clear that there are mn possible, pairwise distinct values
for the function lengths(); that is, L has cardinality card(L) = mn. Therefore,
there are mn possible values for sum(), but these values are not necessarily pair-
wise distinct, as shown, for example, in Table 1 when m = 2 and n = 3. Because
the mn possible routes are equiprobable, it follows that, under the variable-path
choice, DVP(m,n) is a discrete random variable whose mn equiprobable values
are the possible, but not necessarily distinct, values of the function sum(). Thus,
we see that

E[DVP(m,n)] =
∑

(yj1 ,...,yjn )∈L

(
1

mn

)
sum ((yj1 , . . . , yjn)) ,
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an expression that is correct, but not as informative or explicit as we would like.
Hence, we now proceed to clarify the value of E[DVP(m,n)]. A value of sum()
involves each of y1, . . . , ym a nonnegative number of times. Therefore, we can
write

E[DVP(m,n)] =

(
1

mn

)
{f(y1)y1 + · · ·+ f(ym)ym} , (1)

where, for each j = 1, . . . ,m, f(yj) is the number of times that yj appears in
the expression (1) for E[DVP(m,n)]; that is, f(yj) is the total number of times
that yj appears throughout all the elements (yj1 , . . . , yjn) ∈ L. Our goal now is
to determine the value of f(yj) for each j = 1, . . . ,m, and we do so by means
of the Counting Algorithm below.

Table 2: First of two tables pertinent to the counting algorithm.

COLUMN 1 COLUMN 2 COLUMN 3
number of times corresponding number of number of places
yj appears possible different not containing yj
in the ordered lists that remain in
ordered list (yj1 , . . . , yjn) the ordered list
(yj1 , . . . , yjn) containing that many yjs (yj1 , . . . , yjn)

n

(
n

n

)
0

n− 1

(
n

n− 1

)
1

n− 2

(
n

n− 2

)
2

n− 3

(
n

n− 3

)
3

...
...

...

1

(
n

n− (n− 1)

)
=

(
n

1

)
n− 1

0

(
n

n− n

)
=

(
n

0

)
n
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Table 3: Second of two tables pertinent to the counting algorithm.

COLUMN 1 COLUMN 2 COLUMN 3 COLUMN 4
corresponding

number of number of total number corresponding
places not times yj of possible sum total of
containing appears different the number
yj that in the ordered lists of yjs
remain in the ordered (yj1 , . . . , yjn) throughout all
ordered list list containing such ordered lists
(yj1 , . . . , yjn) (yj1 , . . . , yjn) that many yjs (yj1 , . . . , yjn)

0 n

(
n

n

)
(m− 1)0 (n− 0)

(
n

n

)
(m− 1)0

1 n− 1

(
n

n− 1

)
(m− 1)1 (n− 1)

(
n

n− 1

)
(m− 1)1

2 n− 2

(
n

n− 2

)
(m− 1)2 (n− 2)

(
n

n− 2

)
(m− 1)2

3 n− 3

(
n

n− 3

)
(m− 1)3 (n− 3)

(
n

n− 3

)
(m− 1)3

...
...

...
...

n− 1 1

(
n

n− (n− 1)

)
(m− 1)n−1 1

(
n

n− (n− 1)

)
(m− 1)n−1

n 0

(
n

n− n

)
(m− 1)n 0

(
n

n− n

)
(m− 1)n

Begin: Counting Algorithm
Objective: For each j = 1, . . . ,m, count how many times yj ap-

pears in L, the set of all possible ordered lists (yj1 , . . . , yjn), where
yj1 , . . . , yjn ∈ {y1, . . . , ym}; that is, the objective is to determine
the value of f(yj).

Step 1 Fix both a value j ∈ {1, . . . ,m} and the corresponding
yj , and consider an ordered list (yj1 , . . . , yjn) ∈ L. At this moment,
we regard the n places in that ordered list as being “empty".

Step 2 Note the possible number of times that yj can appear
in (yj1 , . . . , yjn). Each such possible number is given in column 1
of Table 2, and defines a row in that table. At this point, we think
of (yj1 , . . . , yjn) as containing only yjs, and the remaining places,
if any, are “empty".

Step 3 For each entry in column 1 of Table 2, count the corre-
sponding number of possible different ordered lists (yj1 , . . . , yjn) ∈
L that contain that many yjs. That number is given in column 2 of
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Table 2. In column 3 of that table we note the corresponding number
of “empty" places in (yj1 , . . . , yjn) yet to be filled in with elements
from {y1, . . . , yj−1, yj+1, . . . , ym}.

Step 4 We now pay attention to the ways in which the “empty
places" in (yj1 , . . . , yjn) can be filled in with the m − 1 elements
in {y1, . . . , yj−1, yj+1, . . . , ym}. In each row of columns 1 and 2 of
Table 3 we note, respectively, the corresponding number of “empty
places" and the number of yjs already in (yj1 , . . . , yjn). In column
3 of Table 3 we note the corresponding total number of different or-
dered lists (yj1 , . . . , yjn) that exist. Then in column 4 of Table 3, we
record the corresponding total frequency of yjs throughout all such
ordered lists (yj1 , . . . , yjn); that frequency is, of course, the product
of the corresponding entries in columns 2 and 3 of that table.

Step 5 To obtain the overall total number of times that yj ap-
pears in L, we now add all the entries in column 4 of Table 3. The
result is the value of f(yj).
End: Counting Algorithm

Thus, it follows from the counting algorithm that, for each j = 1, . . . ,m,

f(yj) =
n∑

k=0

(n− k)

(
n

n− k

)
(m− 1)k , (2)

which we now proceed to simplify. In Equation (2), the last term in the sum is
equal to zero, and, therefore, it may be ignored. Ignoring that term, we have

n−1∑
k=0

(n− k)

(
n

n− k

)
(m− 1)k =

n−1∑
k=0

(n− k)
n!

(n− k)!k!
(m− 1)k

=
n−1∑
k=0

n
(n− 1)!

(n− 1− k)!k!
(m− 1)k

= n

n−1∑
k=0

(
n− 1

k

)
(m− 1)k (3)

= n

n−1∑
k=0

(
n− 1

k

)
(m− 1)k (1)n−1−k

= n
[
{(m− 1) + 1}n−1

]
= n

(
mn−1

)
;
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therefore, from Equation (2), we now obtain, for j = 1, . . . , n,

f(yj) = n
(
mn−1

)
; (4)

also, from (3), we have the identities

n∑
k=0

(n− k)

(
n

n− k

)
(m− 1)k =

n−1∑
k=0

(n− k)

(
n

n− k

)
(m− 1)k

= n
(
mn−1

)
. (5)

Returning to Table 3, we see that, when we add all the entries in column 3 of
that table, we are counting the number of ordered lists in L; as noted earlier, this
number is mn, of course. Thus,

n∑
k=0

(
n

n− k

)
(m− 1)k = mn; (6)

this identity can also be obtained by using techniques similar to those used above
in Display (3).

Therefore, from (5) and (6), we have:

Theorem 1. If m > 1 and n > 1 are integers, then

n∑
k=0

(n− k)

(
n

n− k

)
(m− 1)k =

n−1∑
k=0

(n− k)

(
n

n− k

)
(m− 1)k = n

(
mn−1

)

and
n∑

k=0

(
n

n− k

)
(m− 1)k = mn.

When m = n, then n
(
mn−1

)
= nn. This gives us the following result.

Corollary. For each integer n > 1, we have the following combinatorial identi-
ties:

n∑
k=0

(n− k)

(
n

n− k

)
(n− 1)k =

n−1∑
k=0

(n− k)

(
n

n− k

)
(n− 1)k

=

n∑
k=0

(
n

n− k

)
(n− 1)k = nn.
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Substituting (4) in (1), we see that

E[DVP(m,n)] =

(
1

mn

){
n
(
mn−1

)
y1 + · · ·+ n

(
mn−1

)
ym

}
=

( n

m

)
(y1 + · · ·+ ym) ,

as is the case under the stay-on-path choice. We can now answer our question
thus:

Theorem 2. On average, both choices have the same journey distance; explic-
itly, for either journey choice, the expected values E[DSOP(m,n)] = E[DVP(m,n)] =( n

m

)
(y1 + · · ·+ ym).

3 Concluding remarks

Usually an important distribution parameter, the mean generally does not deter-
mine a probability distribution. In particular, in our problem, the random vari-
ables DSOP(m,n) and DVP(m,n) have the same mean, but they actually follow
different distributions. For instance, when m = 2 and n = 3, the distributions of
DSOP(m=2,n=3) and DVP(m=2,n=3) are completely determined by the following
tables:

DSOP(m=2,n=3) 3y1 3y2

prob 1
2

1
2

and

DVP(m=2,n=3) 3y1 2y1 + y2 y1 + 2y2 3y2

prob 1
8

3
8

3
8

1
8

.

4 Future work

For further study, we are content with briefly discussing just four possibilities.
It’s clear that much more could be done.

4.1 Same directed graph and journey options; further examine the
distributions of the two total journey distances

We have the same directed graph and the same two options for the particle’s
journey. For each of DSOP(m,n) and DVP(m,n), we only wanted to determine
the mean. To continue our investigation, one would naturally want to evaluate
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other distribution parameters. In particular, it would be interesting to know the
variances. To gain a little insight, we used the distribution tables in Section 3 to
compute

Var
[
DSOP(m=2,n=3)

]
=

(
3

2

)2

(y1 − y2)
2 and

Var
[
DVP(m=2,n=3)

]
=

3

4
(y1 − y2)

2 .

Thus, the variance of DSOP(m=2,n=3) is exactly three-times greater than that of
DVP(m=2,n=3). Based on this minuscule evidence, we are tempted to conjecture
that

Var
[
DSOP(m,n)

]
= nVar

[
DVP(m,n)

]
;

is this conjecture true? Moreover, we ask for explicit, closed-form expressions
for each of Var

[
DSOP(m,n)

]
and Var

[
DVP(m,n)

]
.

4.2 Same directed graph; always switch at an intermediate vertex

We have the same directed graph, but the options for the journey are different.
Upon arrival at an intermediate vertex, the particle must change path. Then, for
example, we could study and compare two choices: (1) the particle is not allowed
to return to any edge of a path where it has already been and (2) the particle may
return to an edge of a previously traversed path, but only after it has been on
another path.

4.3 Same directed graph; paths divided differently

We have the same directed graph, but each path is divided into edges of unequal
length. There are, of course, many ways to effect such path division. A number
of choices for the particle’s journey may then be specified.

4.4 Different directed graph

Our directed graph can be modified, for example, so that not all paths meet at
every intermediate vertex. Consequently, a path may then be divided into edges
of unequal length. Of course, several options may then be prescribed for the
particle’s changing between paths.
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