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262 R.P. BEAUSOLEIL

Abstract

This paper presents multiobjective tabu/scatter search architecture with
preference information based on reference points for problems of contin-
uous nature. Features of this new version are: its interactive behavior, its
deterministic approximation to Pareto-optimality solutions near the refer-
ence point, and the possibility to change progressively the reference point
to explore different preference regions. The approach does not impose any
restrictions with respect to the location of the reference points in the objec-
tive space. On 2-objective to 10-objective optimization test problems the
modified approach shows its efficacy and efficiency to find an adequate
non-dominated set of solutions in the preferred region.

Keywords: multiple objectives; metaheuristics; reference point; continuous op-
timization.

Resumen

Este artículo presenta una arquitectura Tabú/Búsqueda Dispersa mul-
tiobjetivo, con información de preferencia basada en punto de referencia
para problemas de naturaleza continua. Los rasgos de esta nueva versión
son los siguientes: funcionamiento interactivo, aproximación determinís-
tica a las soluciones Pareto cercanas al punto de referencia y la posibilidad
de cambiar el punto de referencia para explorar deferentes regiones de
preferencia. El enfoque no impone restricciones con relación a los pun-
tos de referencia en el espacio de los objetivos, y muestra su habilidad
en la solución de problemas desde 2 hasta más de 10 objetivos, hallando
conjuntos de soluciones eficientes cercanas al punto de preferencia.

Palabras clave: múltiples objetivos; metaheurísticas; punto de referencia; opti-
mización continua.

Mathematics Subject Classification: 90C27.

1 Introduction

In the last decade the multiobjective metaheuristics (MOMHs) have been suc-
cessfully used to deal with many different application problems. Nevertheless,
these approaches have difficulties dealing with more than 5 objectives. Gener-
ation of a high quality approximation to the Pareto front demands too compu-
tational time and in the majority of the cases the developed approaches do not
perform well. The general observation is that the effectiveness of the MOMHs
decline with the increase of the number of the objectives. An important task
to the decision-maker (DM) is to choose a single preferred solution. In the last
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time special attention is shown in the development of methods utilizing prefer-
ence information. In Branke et al. [5], user preferences were taken into account
by modifying the definition of dominance. Fonseca and Fleming [12] proposed
using MOGA together with goal information as an additional criterion to assign
ranks to the members of a population. Cvetkovic and Parmee [6] used binary
preference relations translated into weights, to narrow the search modifying the
concept of dominance. Barbosa and Barreto [2] proposed a co-evolutionary ge-
netic algorithm with two populations: a population of solutions to the problem
and a population of weights. Deb [7] modified his NSGA approach to find a set
of solutions which are closest to the supplied goal point. Deb et al. [11] included
preferences through the use of reference points and guided dominance scheme
and a biased crowding scheme was suggested. Thiele et al. [17] incorporated
preference information in an achievement scalarization function. Zitzler et al.
[21] proposed a general multiobjective optimizer that can be adapted to arbitrary
user preferences assuming that the goal is to approximate the Pareto-optimal set.
Molina et al. [15] proposed a variation of the concept of Pareto dominance,
called g-dominance, which is based on the information included in a reference
point and designed to be used with any multiobjective metaheuristics.

In this work, we use the concept of reference point in a tabu/scatter search
approach and we are interested in achieving an accurate approximation to the set
of preferred Pareto solutions.

The remainder of the paper is organized as follows. In Section 2, basic con-
cepts are presented. Section 3 describes the multiobjective scatter search based
on reference point. Section 4 gives the computational experiments. Section 5
contains results and discussion. Conclusion is presented in Section 6.

2 Basic concepts

A general multiple objective optimization (MOO) problem consists of optimiz-
ing a set of r ≥ 2 objective functions. It can be formulated as follows:

minimize{f(x) : f(x) = (f1(x), f2(x), . . . , fr(x))}

s.t.
x ∈ X

where a solution x = (x1, x2, . . . , xn) ∈ X is represented by a vector of n
decision variables, X is a set of feasible solutions.

The image of a solution x in the objective space is a point

z = (z1, z2, . . . , zr) = f(x).
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Having several objective functions, the notion of optimum changes. The
aim here is to find a good compromise rather than a unique solution as in a
single-objective optimization problem. A MOO problem obtains a set of solu-
tions known as the Pareto optimal, related to the following concepts.

Definition 1 (Pareto Dominance) A solution x1 ∈ X dominates another so-

lution x2 ∈ X if and only if ∀i ∈ {1, 2, . . . , n}, fi(x1) ≤ fi(x2), and ∃j ∈
{1, 2, . . . , n} : fj(x1) < fj(x2).

Definition 2 (Efficiency) A solution x∗ is efficient if and only if there is not

another solution x ∈ X such that x dominates x∗.

The whole set of efficient solutions is the Pareto optimal set, and is denoted
by XP . The image of a Pareto optimal set in the objective space results in a set
of non-dominated vectors denoted by PF and called nondominated set or Pareto
frontier.

The aim in multiobjective metaheuristic optimization is to obtain a Pareto
optimal set or a good approximation to it. This is a very difficult task and it
depends on the practical complexity of the problem. As we said above, the
introduction of preference information permits us to narrow the search over the
regions of interest of the decision-maker.

2.1 Preference information and scalarizing functions

The scalarizing functions approaches, proposed by Wierzbicki ([18],[19]) where
the preference information given by a reference point does not need to be an
attainable point. These functions can be stated as follows:

s(z, z̄, ξ) = min{ξmin
j

(zj − z̄j),
r

∑

j=1

(zj − z̄j)} +
r

∑

j=1

(zj − z̄j)} (1)

where ξ is a parameter not less than the dimension of the objectives r.

s(z, z̄, ρ, ) = min{max
j

{(zj − z̄j)}+ ρ
r

∑

j=1

(zj − z̄j)} (2)

where ρ is an arbitrary small positive parameter (0 < ρ ≤ 1). The point z̄j

denote the reference point.
The expression (2) is used to design our selection method. The expression

(1) and other scalarizing functions can be used to develop a parallel approach.
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3 A brief about the MOSS-II algorithm

Here we present the principal components of the MOSS-II algorithm [3].

3.0.1 Neighborhood

We use a simplified version of a sequential fan strategy as a candidate list strat-
egy. The sequential fan generates p best alternative moves at a given step, and
then creates a fan of solution streams, one for each alternative. The best available
moves for each stream are again examined, and only the p best moves overall
provide the p new streams at the next step. In our case, taking p = 1, we have
in each step one stream and a fan of 60 points to consider. We propose to select
moves that consist of changing at most five variables. The range of each vari-
ables is split into subranges, frequency memory is used to control the selection
of the subranges where the variables take values.

Tabu restrictions are imposed to prevent moves that bring the values of vari-
ables “too close” to values they held previously.

3.0.2 Transitions

Now we explain how to transit to a new solution. Let E the set of efficient
moves and D the set of deficient moves, where a deficient move is a move that
not satisfies the aspiration level, in otherwise the move is efficient.

Definition 3 The best efficient move denoted by m∗, is defined as a move such

that [m∗ ∈ E(x) : f(m∗(x)) = min{f(x
′

) : x
′

= m(x); ∀ m ∈ E(x)}].

Definition 4 The best move denoted by mbest is defined as a move such that

mbest is equal to m∗ if E(x) '= ∅, otherwise is equal to m
′

such that m
′ ∈

D(x) : f(m
′

(x)) = min{f(m(x)); ∀ m ∈ D(x)}.

3.0.3 Aspiration level

A thresholding aspiration is used to obtain an initial set of solutions as follows:
without lost generality, assume that every criteria is minimized. Let ∆f(x

′

) =
(∆f1(x

′

), . . . ,∆fr(x
′

)) where ∆fi(x
′

) = fi(x
′

) − z∗i , i ∈ {1, . . . , r} and Z∗

is a reference solution, Z∗ = (z∗1 , . . . , z∗r). Then, x is accepted to introduce into
S if (∃∆fi(x

′

) ≤ 0) or (∀i ∈ {1, . . . , r}[∆fi(x
′

) = 0]), otherwise is rejected.
The point Z∗ is updated by z∗i = min fi(x

′

)∀i ∈ {1, . . . , r}, x
′ ∈ S.
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An additive function value denoted by afv with weights λi = 2− exp(−si)

is taken to measure the quality of the solution, where si =
∣

∣

∣
fi(x

′

) − z∗i

∣

∣

∣
/ |z∗i |.

if z∗i = 0 then we take only the absolute value of∆fi(x
′

).
Let

afv(x
′

) = {(1− θ) ∗
∑

i=1,r

λi∆fi(x
′

).

The parameter θ, is a parameter associated to the selected variables and the
selected subranges, that takes the value 0 if the number of time that the subrange
j has been visited by the variable with index i is greater than a certain threshold.

3.1 Duplicated points

As in all our MOSS algorithms avoiding the duplicate points already generated
is a significant factor in producing an effective overall procedure. The gener-
ation of a duplicate point is called a critical event. Our algorithm is based on
a “critical event design” that monitors the current solutions in the reference set
R, containing the current efficient points, and in the trial solutions set S. The
elements considered in the critical event design are the values of the objectives,
and the decision variables. We consider that a critical event takes place if one
trial solution is “too close” to another solution belonging to the trial solution set
or to the reference set.

3.2 Choosing diverse subsets of nondominated points

As a basis for creating combined solutions we generate subsets. Our approach
is organized to generate three different collections of diverse subsets, which we
refer to as D1 D2, and D3 subsets of R.

Suppose R1 '= ∅ and R2 '= ∅, R1, R2 ⊆ R, TD a set of forbidden solutions,
composing a subset of R excluded from consideration to be combined during
t scatter iterations , and T1D a set of forbidden solutions, composing a subset
of R, excluded from consideration to be combined during t1 scatter iterations,
D ∈ {D1, D2, D3}. Then, the type of subsets we consider are as follows:

• 3-element subsets D1, where the first element is in R1 − TD1, the second
element pertains to R1−T1D1 and it is the most dissimilar to the first, and
the third element belongs to R1−T1D1 selected to be the most dissimilar
to the former two.

• 3-element subsets D2, where the first element is in R1 − TD2, the second
element pertains to R2−T1D2 and it is the most dissimilar to the first, and
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the third element belongs to R2−T1D2 selected to be the most dissimilar
to the former two.

• 3-element subsets D3, where the first element is in R2 − TD3, the second
element pertains to R1 − T1D3 and it is the most dissimilar to the first,
and a third element that belongs to R1 − T1D3 selected to be the most
dissimilar to the selected elements.

If R1 − Z or R2 − Z empty for Z = TD∈{D1,D2,D3} or Z = T1D∈{D1,D2,D3}

then, we take a random solution of R1 or R2 respectively.

3.3 Linear combinations

Our strategy consist to create Ω(D) = x + w(y − x), for w = 1/2, 1/3, 2/3,
3/4, 4/5, 9/10,−1/3,
−2/3, 4/3, 5/3, and x, y ∈ D and to generate new trial points on lines between
(x and y), (x and z), (y and z), (x

′

and z), (y
′

and y), (z
′

and x), (c and x
′

),
(c and y

′

),(c and z
′

), where (y
′

= y + x−z
2 ), (z

′

= z + y−z
2 ), (x

′

= x + x−y
2 )

and (c = (x + y + z)/3), here x
′

y
′

z
′

corresponds to xtrial ytrial ztrial
respectively. For more details see [4].

4 Multiobjective tabu/scatter search based on reference

point (RP-MOSS)

RP-MOSS is a tabu/scatter search method based on reference point approach.
The main idea of our work is to incorporate preference information into the
search and to propose and interactive multiobjective tabu/scatter search approach.
Preference information is given in terms of reference point. Reference points
consist of aspiration levels reflecting desirable values for the objective functions.
This is a natural way of expressing preference information and in this straight-
forward way the decision-maker (DM) can express wishes about improved so-
lutions and directly see and compare how well they could be attained when the
next solutions are generated. The information is used to concentrate the search
on certain portions of the Pareto front. A choice method that uses a scalarizing
function is used to choose a subset of nondominated points near the preferred
region to guide the search. A new strategy for generating subsets of solutions of
the reference set is introduced. The method attempts to find a good approxima-
tion of Pareto-optimal solutions satisfying the supplied goal in only one run.

General characteristics of our approach are summarized as follows:
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1. A deterministic approximation approach.

2. Reference-based strategy embedded in our tabu/scatter search.

3. The reference point may be an attainable or a unattainable point.

4. The method is indifferent to the shape of the Pareto-optimal frontier (such
as convex or non-convex, continuous or discrete, connected or discon-
nected and others).

5. The method is indifferent to the geometrical shapes of the Pareto set.

6. The DM can change the preference information, new reference points are
given in a progressive interaction to evaluate other projections.

7. The method is applicable to a large number of objectives (say, 10 or more),
a large number of variables and linear or non-linear constraints.

The following updating to our previous approaches is performed:

1. The Kramer Choice Function is changed by a new selection method that
uses an scalarizing function of normalized values.

2. A modified strategy to chose subsets of non-dominated points to be com-
bined is introduced.

3. Frequency Memory is used to select the variables and the sub-ranges,
choosing the most frequent variable and its associated sub-range in the
intensification strategy, and the less frequently in the diversification strat-
egy.

4. The bounds of the sub-ranges are changed in each interactive iteration.

4.1 Choice method

Without loss of generality we assume that all attributes are minimized.

1. Normalize the value of the elements of R, let

R̃ = {z̃|z̃ = |(z − z̄)/z∗|}

where z∗ is the maximum value for the solutions z ∈ R (we assume that
z∗ '= 0) and z̄ is the reference point.
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2. Calculate the Choice Function

M∗
R̃

= minz̃∈R̃MR̃(z̃)

where MR̃(z̃) = maxj{z̃j} + ρ
∑r

j=1 z̃j

C(R̃) = {z̃ ∈ R̃|M∗
R̃
≤ MR̃(z̃) ≤ (4/3)M∗

R̃
}

we take ρ = 0.05.

3. Set R = C(R̃) the reference set to be combined.

We try to maintain fifteen preferred solutions in each iteration. The idea is to
avoid overloading the DM with too much information. To do this, the set C(R̃)
is sorted in ascending order, then it is updated with a number of solutions equal
to the min(|C(R̃)|, 15) taken in the corresponding order.
The function MR̃ is a variant of the scalarizing function (2).

4.2 Generating subsets method

As a basis for creating combined solutions we generate subsets D ⊂ R.
The type of subset we consider is as follows: 2-element subsets D where the

first element is in R − TD and the second pertains to R − TD selected to be the
closest to the first (the minimum Euclidean distance).

TD is a forbidden set of solutions that were selected to be combined.

4.3 Linear combinations method

Our strategy consists on creating Ω(D) = x + (y − x), for = 1/3, 1/2, 2/3, 3/4,
4/5, and x, y ∈ D as follows:

Generate new trial points on lines between x and y.

4.4 Changing the bounds of the sub-range

For the current selected set of non-dominated solutions is calculated the maxi-
mum and the minimum value of each variable. Then, for each variable defined
in the range [li, ui] (as in our previous approaches MOSS [3] and MOSS-II,
each range is divided in sub-ranges) the lower bound of the first sub-range is set
equal to li, and the upper bound of the last sub-range is set equal to ui. Next,
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the upper bound of the first sub-range is set equal to the minimum value of the
corresponding variable, and the lower bound of the last sub-range is equal to
the maximum of the corresponding variable also. A number of equal-sized sub-
ranges are formed between these two boundaries.

This mechanism permits to intensify the search in the region defined by the
current non-dominated solutions permit us to restrict the search to this region.
Nevertheless, the bound sub-ranges (the first and the last sub-ranges) permit to
escape of the narrow region.

4.5 RP-MOSS procedure

The basic idea of our new version is the progressive and select search of poten-
tially non-dominated (p.n.d.) solutions by focusing the search, in each step of
interaction, in a sub-region of point closest to the reference point supplied by the
decision maker. Each computing phase produces a set of p.n.d. solutions more
concentrated around the best p.n.d. solution, taking into account the choice func-
tion previously described. As in our previous approaches, we use a multi-start
tabu search as a generator of diverse solutions. Initially, a set of trial solutions are
created from the starting points and these are improved by linear combination.
These solutions are filtered to choose feasible trial solutions. When all starting
solutions have been explored, the parameter δ, used to avoid duplicated points,
is reduced using the following expression δ = (0.8)δ. The obtained solutions
are improved in the scatter phase by the linear combination method. These solu-
tions are presented to the DM, and he/she can decides to stop or to continue the
search. He can continue the search changing the reference point or not. The new
reference point is calculated as a convex combination between the current refer-
ence point and the new reference point supplied by the DM (i.e. update z̄ using
z̄ = (1 − θ)z̄ + θẑ where ẑ is the new reference point, and the user-parameter
satisfying 0 ≤ θ ≤ 1). To continue, by re-starting the TS approach, new non-
dominated solutions are generated from a subset of potentially Pareto solutions
nearest to the reference point supplied by the DM.

A formal algorithm of RP-MOSS is given below.

Algorithm RP-MOSS

Create starting points to initiate the approach
Repeat

While (iter '= 2)//tabu phase

Repeat
Use of a memory-based strategy to generate
a set of trial solutions from the starting points
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Filter to preserve the feasibility
Update the set of reference points taking
the current potentially Pareto solutions

Until to explore all starting points
Modify the parameter δ
Choose new starting points from the reference set

End //the tabu phase

//begin the scatter phase

Generate subsets of the reference set using
the Generating Subset Method
Apply the Linear Combination Method to obtain new solutions
Update the reference set using the Choice Method
Update the starting points from the reference set
//end the scatter phase

Change the sub-ranges
Show the solutions obtained to the decision-maker

Until (the decision-maker is satisfied)

5 Numerical examples

The proposed approach is tested on a set of multiobjective test problems from
two to 10 objectives and high dimensionality.

Two-objective test problems

First, we consider the 100-variable modified ZDT1 and modified ZDT2 prob-
lems [16]. These problems have a convex Pareto-optimal front and a concave
Pareto-optimal front respectively, spanning continuously in f1 ∈ [0, 1].

Minimize ZDT (x) = (f1, f2)

subject to
f2 = g(X)(1−

√

x1/g(X))

x = (x1, . . . , xn)

where g(x) = 1 + 9/(n− 1)
∑n

i=2 x2
i .

x1 ∈ [0, 1] and xi ∈ [−1, 1] for i ∈ {2, 3, . . . , n}
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The Pareto-optimal solutions correspond to 0 ≤ x1 ≤ 1 and xi = 0 for
i ∈ {2, 3, . . . , n}.
For the modified ZDT2 the function f2 takes the following form:

f2 = g(X)(1− (x1/g(X))2).

Three-objective test problem

Problem LZ07_F6 [13]: This problem has a concave PF and there are non-linear
linkages between decision variables.

Minimizef1 = cos(0.5x1π) cos(0.5x2π)+
2

|J1|
∑

j∈J1

(xj−2x2 sin(2πx1+
jπ

n
))2

Minimizef2 = cos(0.5x1π) sin(0.5x2π)+
2

|J2|
∑

j∈J2

(xj−2x2 sin(2πx1+
jπ

n
))2

Minimizef3 = sin(0.5x1π) +
2

|J3|
∑

j∈J3

(xj − 2x2 sin(2πx1 +
jπ

n
))2

where J1 = {j|3 ≤ j ≤ n and j − 1 is a multiplication of 3}
J2 = {j|3 ≤ j ≤ n, and j − 2 is a multiplication of 3}
J3 = {j|3 ≤ j ≤ n, and j is a multiplication of 3};
Pareto set = {x|xj = 2x2 sin(2πx1 − jπ

n ), j = 3, . . . , n}.
Pareto front = f2

1 + f2
2 + · · ·+ f2

r = 1 with f1, f2, f3 ∈ [0, 1]
Here we use n = 10 recomended by the authors.

Five-objective test problems

Miettinen et al. [14]: The problem is related to locating a pollution monitoring
station in a two-dimensional decision space. This problem is highly non-linear
and the Pareto optimal set is discontinuous.

f1(x) = −u1(x1, x2) − u2(x1, x2) − u3(x1, x2) + 10

f2(x) = −u1(x1−1.2, x2−1.5)−u2(x1−1.2, x2−1.5)−u3(x1−1.2, x2−1.5)+10

f3(x) = −u1(x1 +0.3, x2−3.0)−u2(x1 +0.3, x2−3.0)−u3(x1 +0.3, x2−3.0)+10

f4(x) = −u1(x1−1.0, x2+0.5)−u2(x1−1.0, x2+0.5)−u3(x1−1.0, x2+0.5)+10

f5(x) = −u1(x1−0.5, x2−1.7)−u2(x1−0.5, x2−1.7)−u3(x1−0.5, x2−1.7)+10

u1(x) = 3(1− x1)2 exp(−x2
1 − (x2 + 1)2)
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u2(x) = −10(x1/4 − x3
1 − x5

2) exp(−x2
1 − x2

2)

u3(x) = 1/3 exp(−(x1 + 1)2 − x2
2)

x1 ∈ [−4.9, 3.2], x2 ∈ [−3.5, 6].

10-objective test problem

Problem DTLZ2 [10]: The following test problem prove the ability of our ap-
proach to project the reference point on the global Pareto-optimal front, satisfy-
ing f2

1 + f2
2 + · · ·+ f2

r = 1 in the range f1, f2, . . . , fr ∈ [0, 1], we considered
19 variables and 10 objectives.

CTP2 constrained test problem

This test problem was proposed by Deb in [9]. In it the Pareto-optimal region is
a disconnected set of the unconstrained Pareto-optimal feasible region.

minimize f1(x) = x1,

minimize f2(x) = g(x)(1− f1(x)/g(x)).

s.t.
c(x) = cos(θ)(f2(x) − e) − sin(θ)f1(x) ≥ a| sin(bπ(sin(θ)(f2(x) − e) +
cos(θ)f1(x))c)|d

x1 ∈ [0, 1], −5 ≤ xi ≤ 5, (i = 2, 3, 4, 5).

The following parameters are used to define the problems:

θ = −0.2π, a = 0.2, b = 10, c = 1, d = 0.5, e = 1.

For the above problems, the Pareto-optimal solutions lie on the straight line
(f2(x)− e) cos(θ) = f1(x) sin(θ).

Welded beam design constrained real test problem

The welded beam design problem has four real-parameter variables
x = (h(x1), l(x2), t(x3), b(x4)) and four non-linear constraints. One of the
two objectives is to minimize the cost of fabrication and other is to minimize the
end deflection of the welded, the task is to find, if possible, a set of solutions
which are better than the given reference point in all objectives (see [8]).
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Minimize f1(x) = 1.1047x2
1x2 + 0.04811x3x4(14.0 + x2)

Minimize f2(x) =
2.1952

x3
3

s.t.

g1(x) = 13, 600− τ(x) ≥ 0,

g2(x) = 30, 000− σ(x) ≥ 0,

g3(x) = x4 − x1 ≥ 0,

g4(x) = 0.10471(x2
1) − 0.04811x3x4(14.0 + x2) + 5.0 ≥ 0,

g5(x) = x1 − 0.125 ≥ 0,

0.125 ≤ x1, x2 ≤ 5

0.1 ≤ x3, x4 ≤ 10.

The terms τ(x), σ(x), Pc(x), δ(x) are given below

τ(x) =

√

(τ ′)2 + (2τ ′τ ′′)
x2

2R
+ (τ ′′)2

τ ′(x) =
6000√
2x1x2

τ ′′(x) =
6000(14 + x2

2 )
√

0.25(x2
2) + ((x1 + x3)/2)2

2[x1x2
√

2(x2
2/12 + 0.25(x1 + x3)2)]

σ(x) =
504, 000

x2
3x4

δ(x) =
65, 856, 000

(30× 106)x4x3
3

Pc(x) =
4.013(30× 106)

√

x2
3
x6
4

36

196



1 −
x3

√

30×106

4(12×106)

28



 .
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6 Results and discussion

The following figures illustrate the proposed interactive approach by which a
set of Pareto-optimal solutions or a good approximation to it near a supplied
reference point will be found. For a chosen reference point, the closest set of
Pareto-optimal solutions is the target solution to the reference point method. If
the decision-maker is not satisfied with the achieved solution, her/his can con-
tinue with the same reference point or can change the reference point and to
continue the search.

Figure 1: Preferred solutions on the mZDT1 and mZDT2 test problems.

Figure 1 shows the approximations for the mZDT1 and mZDT2 test prob-
lems. In the upper pictures at left, a unattainable (infeasible) point (0.3,0.2) is
given, and at right, is given an attainable (feasible) reference point (0.8,0.8). Ob-
serve that the obtained solutions are non-dominated points that lies practically
over the Pareto front and close to the supplied reference point. You can see that
the non-convexity does not cause difficulty to the proposed approach.

In the lower picture, two projections of the same reference point (1.6,1.8) are
shown. One of these projections is obtained with weights (0.8,0.2), you can
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observe, that in this case the objective f1 is prefered. In the second projection,
the weights are (0.2,0.8) given more preference to the objective f2.

In these cases to measure how far the nondominated solutions achieved are
from the Pareto optimal front, the measure Generational Distance suggested in

[20] is used, GD=(
∑|Q|

1 dp
i )

1

p /|Q| where p = 2 . For the test problem mZDT2
and the reference point (0.8,0.8), the GD value is 0. For the mZDT1 test prob-
lem, reference point (0.3,0.2), the GD value is 0.0006. This means, that in the
first case the projection lies on the optimal-Pareto front, and in the second case
very close to it. The points of the projection for the reference point (0.3,0.2) lie in
the following ranges: f1 ∈ [0.445407, 0.445413] and f2 ∈ [0.335165, 0.335174]
and for the reference point (0.8,0.8) f1 ∈ [0.621428, 0.621945] and
f2 ∈ [0.620823, 0.621283].

Figure 2. shows how our approach is also indifferent to the geometrical
shape of the Pareto set. In this picture the reference point is (0.8,0.8,0.8), and
the projections are close to the surface of the Pareto optimal front.

∑3
i=1 f2

i ∈
[1.007, 1.007] (for an approximate 0.7% outside from one) that means that the
projection is very close to the optimal-Pareto front.

Figure 2: Preferred solutions on the LZ07-F6 test problem.
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Figure 3: Preferred solutions on the Miettinen test problem.

Figure 3. shows the approximation obtained for the Miettinen real test prob-
lem with reference points (10, 10, 10, 10, 10) on the left, and (12, 11, 10, 9, 8)
on the right. The reference points are indicated by straight lines. Observe that
the projections lie under the reference points. An appropriate number of pre-
ferred solutions and a graphical representation, give the possibility to make a
comparison and to make a preferred decision.

Figure 4. shows the preferred solutions achieved on the DTLZ2 for 10-
objectives, 19 variables. The figure shows the graphic for the DTLZ2, the
reference point is (0.3,0.3,. . . ,0.3). In this case the solutions are also around
the supplied reference point and near to the Pareto-optimal front

∑10
i=1 f2

i ∈
[1.027, 1.027] (for an approximate 2.7% outside from one). A zoom of the
reached solutions shows that the solutions range between [0.26, 0.37] indicat-
ing that these are around the reference point given by the DM. This indicate
the ability of this approach to solve difficult problems with a great number of
objectives.
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Figure 4: Preferred solutions on the DTLZ2 test problem.

Now we present a constrained disconnected test problem CTP2 figure 5. In
the left side is given the unattainable reference point (0.2,0.7), and in the right
side the attainable reference point (0.5,0.8). The figure 5 shows that the sup-
plied reference points are not optimal solutions and there exist a number of so-
lutions which dominate these solutions. The aim is to obtain non-dominated
solutions over dominated solutions. In these two cases the approach achieved a
set of disconnected solutions very close to the optimal Pareto front, with a devi-
ation of 0.07 and 0.08 respectively from the straight line (f2(x) − e) cos(θ) =
f1(x) sin(θ).

Figure 6 illustrates the capacity of our approach to help the decision-maker
(DM) in the case that his/her is interested in knowing a tradeoff in different re-
gions of interest. Different feasible and unfeasible reference points are given in
an interactive approach and different projections near to they are presented to the
DM. To investigate where these regions are with respect to the complete trade-
off front, we also show the original MOSS-II solutions. Here a first reference
point in (5,0.003) is supplied. The supplied point is not a feasible solution and
the proposed approach obtains feasible solutions improving, in the Pareto sense,
the solutions achieved by MOSS-II. From here, the DM continues by varying the
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Figure 5: Preferred solutions on the CTP2 test problem.

reference point by supplying two new feasible targets (12,0.002) and (20,0.0015)
the news projections fall in the frontier.

Thus, if the decision-maker is interested in knowing a trade-off of optimal so-
lutions in different regions, the proposed interactive approach is able to achieves
non-dominated solutions near to the supplied targets.

7 Conclusion

In this paper, we introduce a new preference-based tabu/scatter search approach
that incorporate preference information coming of the decision-maker. Our main
purpose is, to develop a deterministic tabu/scatter search to find a set of solu-
tions in the region of Pareto-optimality, which are of interest to the decision-
maker. We show that, only a few changes, principally the selection method, are

Rev.Mate.Teor.Aplic. (ISSN 1409-2433) Vol. 21(2): 261–282, July 2014



280 R.P. BEAUSOLEIL

Figure 6: Preferred solutions on the Welded Beam real test problem.

necessary to incorporate preference information in the tabu/scatter search archi-
tecture. An adaptive parameter control adjusts the neighborhood of the projected
reference point to show a reasonable number of solutions to the DM. We also
show, how changing the reference point in an interactive approach the decision-
maker can explore different preference regions of the Pareto-optimality.

The proposed technique has been applied to a number of 2-objective to 10-
objective optimization problems, from 2 to 100 variables, and with different
shapes and restrictions. In all cases, a set of nondominated preferred solutions
has been obtained.
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