REGULARIZED FUNCTIONS ON THE PLANE AND NEMYTSKII OPERATORS

FUNCIONES REGULARES EN EL PLANO Y OPERADORES DE NEMYTSKII

WADIE AZIZ*

Received: 29/Jul/2013; Revised: 1/Nov/2013; Accepted: 8/Nov/2013

*Departamento de Física y Matemática, Universidad de Los Andes, Trujillo, Venezuela. E-Mail: wadie@ula.ve. On leave at CIMPA & Escuela de Matemática, Universidad de Costa Rica, San José, Costa Rica.
Abstract

In this paper we show that the space of the so-called regularized functions defined on some rectangle in the plane is a Banach space. Moreover, under suitable hypotheses we give a necessary and sufficient condition for the Nemytskii operator to map the space of regularized functions into itself.

Keywords: regularized functions of two variables, Banach spaces, Nemytskii operator.

1 Introduction

The regularized functions (also called regulated functions) were introduced by Georg Aumann in 1954 [2], that is, functions of a real variable which at each point of their domain of definition admit both finite one-sided limits. In [13] the space of regularized functions on \([a, b]\) is denoted by \(G(a, b)\).

Regularized functions play an important role, for instance, in applications to differential equations with singular right-hand sides or with distributional coefficients, see [7], or to the Skorokhod problem, see [4]. In the study of the controllability of systems governed by evolution equations, as well as in existence and expansion of solutions of differential or functional equations the Nemytskii operator appears in a natural way. To the best of our knowledge, this operator has not been studied up to now in spaces of regularized functions. Given a rectangle \(I := [a, b] \times [c, d]\) in the plane \(\mathbb{R}^2\), in this paper we show that the space \(G^{-}(I)\) of so-called left-left regularized functions \(h : I \to \mathbb{R}\) is a Banach space, and we characterize the Nemytskii operator acting in this space.
2 Regularized functions

Let $I = [a, b] \times [c, d]$ as above, and let $h : I \rightarrow \mathbb{R}$ be some function. Following [5] we call the function h_- defined by

$$h_-(t, s) = \begin{cases}
\lim_{(x,y) \rightarrow (t^+, s^-)} h(x, y), & (t, s) \in (a, b] \times (c, d], \\
\lim_{(x,y) \rightarrow (t^-, c^+)} h(x, y), & (t, s) \in (a, b] \times \{c\}, \\
\lim_{(x,y) \rightarrow (a^+, s^-)} h(x, y), & (t, s) \in \{a\} \times (c, d], \\
\lim_{(x,y) \rightarrow (a^+, c^+)} h(x, y), & (t, s) = (a, c)
\end{cases}$$

the left-left regularization of h. In the sequel the class of functions h for which the left-left regularization exists will be denoted by $G^-(I; \mathbb{R})$. Finding functions in this class is trivial: for example, any continuous function $h : I \rightarrow \mathbb{R}$ satisfies $h_-(t, s) \equiv h(t, s)$, and so belongs to $G^-(I; \mathbb{R})$.

The right-right regularization of a function $h : I \rightarrow \mathbb{R}$ is defined in a similar way by

$$h_+(t, s) = \begin{cases}
\lim_{(x,y) \rightarrow (t^+, s^+)} h(x, y), & (t, s) \in [a, b] \times [c, d], \\
\lim_{(x,y) \rightarrow (t^+, d^-)} h(x, y), & (t, s) \in [a, b] \times \{d\}, \\
\lim_{(x,y) \rightarrow (b^+, s^+)} h(x, y), & (t, s) \in \{b\} \times [c, d], \\
\lim_{(x,y) \rightarrow (b^+, d^-)} h(x, y), & (t, s) = (b, d).
\end{cases}$$

Similarly to the previous case we denote the class of functions which admit a right-right regularization by $G^+(I; \mathbb{R})$. Finally, the class $G^{-+}(I; \mathbb{R})$ of left-right regularized and the class $G^{+-}(I; \mathbb{R})$ of right-left regularized functions are defined analogously.

It is easy to see that the classes $G^-(I, \mathbb{R})$ and $G^+(I, \mathbb{R})$ are different. For example, the function h defined on $I = [-1, 1] \times [-1, 1]$ by

$$h(x, y) = \begin{cases}
\frac{1}{x + y}, & x > 0 \text{ and } y > 0, \\
1 & \text{otherwise}
\end{cases}$$

satisfies

$$h_-(0, 0) = h(0, 0) = 1, \quad h_+(0, 0) = \infty$$

and therefore belongs to $G^+(I; \mathbb{R})$, but not to $G^-(I; \mathbb{R})$.

3 Properties of regularized functions

In this section we show that the class $G^-(I; \mathbb{R})$ is a Banach space.

Proposition 3.1 The class $(G^-(I; \mathbb{R}), +, \cdot)$ is a linear space.

Proof. Given $f, g \in G^-(I; \mathbb{R})$ and $\alpha \in \mathbb{R}$, we have to show that $f + g \in G^-(I; \mathbb{R})$ and $\alpha f \in G^-(I; \mathbb{R})$. Denoting by f_- the left-left regularization of f and by g_- the left-left regularization of g we get for $(t, s) \in (a, b] \times (c, d]$

\[
(f + g)_-(t, s) = \lim_{(x,y) \rightarrow (t^-, s^-)} f(x, y) + \lim_{(x,y) \rightarrow (t^-, s^-)} g(x, y) = \lim_{(x,y) \rightarrow (t^-, s^-)} [f(x, y) + g(x, y)] = f_-(t, s) + g_-(t, s).
\]

The other three cases for $(t, s) \in I$ are treated similarly, and so we have shown that $f + g \in G^-(I; \mathbb{R})$. For $\alpha \in \mathbb{R}$ and $(t, s) \in (a, b] \times (c, d]$ we obtain

\[
(\alpha f)_-(t, s) = \lim_{(x,y) \rightarrow (t^-, s^-)} (\alpha f)(x, y) = \alpha \lim_{(x,y) \rightarrow (t^-, s^-)} f(x, y) = \alpha f_-(t, s),
\]

and analogously for the other choices of $(t, s) \in I$. We conclude that $\alpha f \in G^-(I; \mathbb{R})$ which proves the assertion. \(\blacksquare\)

In the sequel we consider the linear space $G^-(I; \mathbb{R})$ equipped with the supremum norm

\[
\|f\|_\infty := \sup \left\{ |f(x, y)| : (x, y) \in I \right\}.
\]

We have then the following result.

Theorem 3.1 $(G^-(I; \mathbb{R}), \| \cdot \|_\infty)$ is a Banach space.

Proof. Let $\{f_n\}_{n \geq 1} \in G^-(I; \mathbb{R})$ be a Cauchy sequence, which means that for each $\varepsilon > 0$ there exists $N = N_\varepsilon > 0$ such that $n, m \geq N$ implies $\|f_n - f_m\|_\infty < \varepsilon$. Since

\[
|f_n(t, s) - f_m(t, s)| \leq \|f_n - f_m\|_\infty < \varepsilon
\]

for all $(t, s) \in I$, we conclude that $\{f_m(t, s)\}_{m \geq 1}$ is a Cauchy sequence in \mathbb{R}, and so we know that the pointwise limit

\[
f(t, s) := \lim_{m \rightarrow \infty} f_m(t, s) \quad (t, s) \in I
\]

exists. We claim that $f \in G^-(I; \mathbb{R})$ and $\lim_{m \rightarrow \infty} \|f_n - f\|_\infty = 0$. To prove this assertion fix $\varepsilon > 0$, and choose N such that $n, m \geq N$ implies $\|f_n - f_m\|_\infty < \varepsilon$. We distinguish now four possibilities for (t, s):

\[\text{(ISSN 1409-2433) Vol. 21(1): 11–20, January 2014}\]
(i) Let \((t, s) \in (a, b] \times (c, d]\). In this case we have

\[
|f_n(t, s) - f(t, s)| \\
= |f_n(t, s) - \lim_{m \to \infty} f_m(t, s)| \\
= |\lim_{(x, y) \to (t-, s-)} f_n(x, y) - \lim_{m \to \infty} \lim_{(x, y) \to (t-, s-)} f_m(x, y)| \\
= \lim_{m \to \infty} \lim_{(x, y) \to (t-, s-)} |f_n(x, y) - f_m(x, y)| \\
\leq \|f_n - f_m\|_\infty < \varepsilon.
\]

(ii) In the case \((t, s) \in (a, b] \times \{c\}\) we obtain

\[
|f_n(t, c) - f(t, c)| \\
= |f_n(t, c) - \lim_{m \to \infty} f_m(t, c)| \\
= |\lim_{(x, y) \to (t-, c^+)} f_n(x, y) - \lim_{m \to \infty} \lim_{(x, y) \to (t-, c^+)} f_m(x, y)| \\
= \lim_{m \to \infty} \lim_{(x, y) \to (t-, c^+)} |f_n(x, y) - f_m(x, y)| \\
\leq \|f_n - f_m\|_\infty < \varepsilon.
\]

(iii) The case when \((t, s) \in \{a\} \times (c, d]\) is similar to those considered above.

(iv) If \((t, s) = (a, c)\) we get

\[
|f_n(a, c) - f(a, c)| \\
= |f_n(a, c) - \lim_{m \to \infty} f_m(a, c)| \\
= |\lim_{(x, y) \to (a^+, c^+)} f_n(x, y) - \lim_{m \to \infty} \lim_{(x, y) \to (a^+, c^+)} f_m(x, y)| \\
= \lim_{m \to \infty} \lim_{(x, y) \to (a^+, c^+)} |f_n(x, y) - f_m(x, y)| \\
\leq \|f_n - f_m\|_\infty < \varepsilon.
\]

In all cases we have shown that \(\|f_n - f\|_\infty < \varepsilon\). Moreover, since \(G^-(I; \mathbb{R})\) is a linear space we have \(f_n, f_n - f \in G^-(I; \mathbb{R})\). Therefore \(f = (f - f_n) + f_n \in G^-(I; \mathbb{R})\), and the proof is complete.
Clearly, in a similar way we can prove that $G^-(I; \mathbb{R})$, $G^+(I; \mathbb{R})$ and $G^+(I; \mathbb{R})$ are Banach spaces with the supremum norm. We remark that we have not only $C(I; \mathbb{R}) \subset G^-(I; \mathbb{R})$, but also $BV(I; \mathbb{R}) \subset G^-(I; \mathbb{R})$, see [3].

A function $f : I \to \mathbb{R}$ is said to be left-left continuous if
\[
\lim_{(x,y) \to (t,s)} f(x, y) = f(t, s) \text{ for all } x \in (a, b] \text{ and } y \in (c, d].
\]

We denote by $BV^*(I; \mathbb{R})$ the subspace of $BV(I; \mathbb{R})$ of those functions which are left–left continuous on $(a, b] \times (c, d]$.

Lemma 3.2 (cf. [3]) If $h \in BV(I; \mathbb{R})$, then $h^- \in BV^*(I; \mathbb{R})$.

4 The Nemytskii operator

For $I = [a, b] \times [c, d]$ as before, consider the linear space F of all functions $f : I \to \mathbb{R}$ and the nonlinear operator $H : F \to F$ defined by the formula
\[
(H_f)(t, s) = h(t, s, f(t, s)),
\]
where $h : I \times \mathbb{R} \to \mathbb{R}$ is a mapping. In this case we say that H is the Nemytskii operator generated by h. When h is independent on $(t, s) \in I$, the Nemytskii operator generated by h is called autonomous.

In [6] Josephy proved that the autonomous Nemytskii operator generated by $h : \mathbb{R} \to \mathbb{R}$ is a self mapping of $BV([a, b]; \mathbb{R})$ if and only if h is locally Lipschitz on \mathbb{R}. Subsequently, several authors proved this result for many other functions spaces (see [1, 8, 9, 10, 11, 12], for example).

Here we will give conditions to assure that the Nemytskii operator defined on the space $G^-(I; \mathbb{R})$ maps this space into itself. To this end we consider the space $G^- \cdot Lip(I \times \mathbb{R}; \mathbb{R})$ of all left-left regularized functions in the first two variables and Lipschitzian in the third variable, i.e. all functions h which satisfy the following two conditions:

(i) The map $(t, s) \mapsto h(t, s, u)$ is a left-left regularized function for all $u \in \mathbb{R}$.

(ii) There exists $M > 0$ such that
\[
|h(t, s, u) - h(t, s, v)| \leq M|u - v| \quad ((t, s) \in I). \quad (*)
\]

Observe that the class $G^- \cdot Lip(I \times \mathbb{R}; \mathbb{R})$ is a Banach space equipped with the norm
\[
\|h\|_{Lip} = \max \left\{|h_0|_\infty, [h] \right\}, \quad (4.1)
\]
where $h_0 : I \to \mathbb{R}$ is defined by $h_0(t, s) = h(t, s, 0)$ (H_0 is the Nemytskii operator generated by h_0) and

$$[h] = \inf \left\{ M : M \text{ satisfies } (*) \right\}. \quad (4.2)$$

Now we are going to prove our main result which is motivated by the technique used in [14].

Main Theorem 4.1 Suppose that $h(t, s, \cdot) : \mathbb{R} \to \mathbb{R}$ is Lipschitzian for all $(t, s) \in I$. Then the Nemytskii operator H generated by h maps the space $G^- (I; \mathbb{R})$ into itself if and only if $h \in G^- (I; \mathbb{R}) \cdot \text{Lip}(I \times \mathbb{R}; \mathbb{R})$. Moreover, in this case the operator H is bounded.

Proof. Observe that if H maps $G^- (I; \mathbb{R})$ into itself then for any function $f : I \to \mathbb{R}$ the operator $H_f : I \to \mathbb{R}$, where $H_f(t, s) = h(t, s, f(t, s))$.

Hence we deduce that $h(t, s, f(t, s))$ is a left-left regularized function for all $f \in \mathbb{R}^I$. Moreover, keeping in mind that $h \in \text{Lip}(I \times \mathbb{R}; \mathbb{R})$, we get that

$$h \in G^- (I; \mathbb{R}) \cdot \text{Lip}(I \times \mathbb{R}; \mathbb{R}).$$

Conversely, for all $(t, s) \in I$, we have: (i) If $(t, s) \in (a, b] \times (c, d]$, then

$$H_f(t^-, s^-) - H_f(t, s) = h(t^-, s^-, f(t^-, s^-)) - h(t, s, f(t, s))$$

$$= h_-(t^-, s^-, f(t^-, s^-)) - h_-(t, s, f(t, s))$$

$$= \lim_{(x, y) \to (t^-, s^-)} h(x, y, f(x, y)) - h(t, s, f(t, s)) = 0.$$

(ii) If $(t, s) \in (a, b] \times \{c\}$, then

$$H_f(t^-, s^-) - H_f(t, s) = h(t^-, s^-, f(t^-, s^-)) - h(t, s, f(t, s))$$

$$= h_-(t^-, s^-, f(t^-, s^-)) - h_-(t, s, f(t, s))$$

$$= \lim_{(x, y) \to (t^-, c^+)} h(x, y, f(x, y)) - h(t, s, f(t, s)) = 0.$$

(iii) For $(t, s) \in \{a\} \times (c, d]$ we proceed in a similar way as in (ii).

(iv) If $(t, s) = (a, c)$ the result is trivial and we omit it. Now we will show that H_f is left-left continuous. In fact, we get
\[
\lim_{(\tau, \sigma) \to (t^-, s^-)} \left| H_f(\tau, \sigma) - H_f(t, s) \right|
\]
\[
= \lim_{(\tau, \sigma) \to (t^-, s^-)} \left| h(\tau, \sigma, f(\tau, \sigma)) - h(t, s, f(t, s)) \right|
\]
\[
= \lim_{(\tau, \sigma) \to (t^-, s^-)} \left| h_-(\tau, \sigma, f(\tau, \sigma)) - h_-(t, s, f(t, s)) \right|
\]
\[
\leq M \cdot \lim_{(\tau, \sigma) \to (t^-, s^-)} \left| f(\tau, \sigma) - f(t, s) \right| + \\
\lim_{(\tau, \sigma) \to (t^-, s^-)} \left| h(\tau, \sigma, f(t, s)) - h(t, s, f(t, s)) \right|
\]
\[
= M \cdot 0 + 0 = 0,
\]
where \(M \) is the Lipschitz constant from \((*)\). It follows that \(H \) maps \(G^-(I, \mathbb{R}) \) into itself.

Next, we prove that the operator \(H \) is bounded.

Let \(B_r = \{ f \in G^-(I, \mathbb{R}) : \|f\|_{\infty} \leq r \} \). Then we obtain
\[
\|H_f\|_{\infty} - \|H_0\|_{\infty} \leq \|H_f - H_0\|_{\infty} = \sup_{(t,s) \in I} \left| (H_f)(t, s) - (H_0)(t, s) \right|
\]
\[
= \sup_{(t,s) \in I} \left| h(t, s, f(t, s)) - h(t, s, 0) \right|
\]
\[
\leq M \cdot \sup_{(t,s) \in I} \left| f(t, s) \right| \leq M \cdot r.
\]

Next, we derive
\[
\|H_f\|_{\infty} \leq M r + \|H_0\|_{\infty}
\]
\[
= M r + \|h(t, s, 0)\|_{\infty}
\]
\[
= M r + \|h_0\|_{\infty}.
\]
This completes the proof. ■

We point out that our results may be extended in different directions. For instance, instead of functions on a rectangle in the plane one may consider functions of several variables on a cube in finite-dimensional Euclidean space. Moreover, all constructions carry over without any change from real valued functions to functions taking their values in a Banach space.

Acknowledgement

The author would like to thank the anonymous referees and the editors for their valuable comments and suggestions. Also, I want to mention this research was partly supported by CDCHTA of Universidad de Los Andes under the project NURR-C-547-12-05-B.

References

